A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Y   Z  

Byrd, J. M.

Paper Title Page
WEO1A02 Progress in Ultrafast X-ray Streak Cameras 209
 
  • J. M. Byrd
    LBNL, Berkeley, California
 
  Streak cameras remain one of the tools for study of ultrafast phenomena. We present progress on modeling of x-ray streak cameras with application to measurement of ultrafast phenomena. Our approach is based on treating the streak camera as a photocathode gun and applying modeling tools for beam optics and electromagnetic fields. We use these models to compare with experimental results from a streak camera developed at the Advanced Light Source. We also show how this model can be used to explore several ideas for achieving sub-100 fsec resolution.  
WEPC08 Fiberoptics-Based Instrumentation for Storage Ring Beam Diagnostics 325
 
  • S. De Santis, J. M. Byrd
    LBNL, Berkeley, California
  • Y. Yin
    Y. Y. Labs, Inc., Fremont, California
 
  We present the results of our experiments at the Advanced Light Source concerning the coupling of synchrotron radiation into optical fibers. Many beam diagnostic devices in today's synchrotron rings make use of the radiation emitted by the circulating particles. Such instruments are placed in close proximity of the accelerator, where in many instances they cannot be easily accessed for safety consideration, or at the end of a beamline, which, because of its cost, can only move the light port a few meters away from the ring. Our method, suitable for all those applications where the longitudinal properties of the beam are measured (i.e. bunch length, phase, etc.), allows placing the diagnostic instruments wherever is more convenient, up to several hundreds of meters away from the tunnel. This would make maintaining and replacing instruments, or switching between them, possible without any access to restricted areas. Additionally, one can use the vast array of optoelectronic devices, developed by the telecommunication industry, for signal analysis.