

MSU Re-accelerator

The Reacceleration of Low Energy RIBs at the NSCL

Xiaoyu Wu

National Superconducting Cyclotron Laboratory (NSCL)

Michigan State University (MSU)

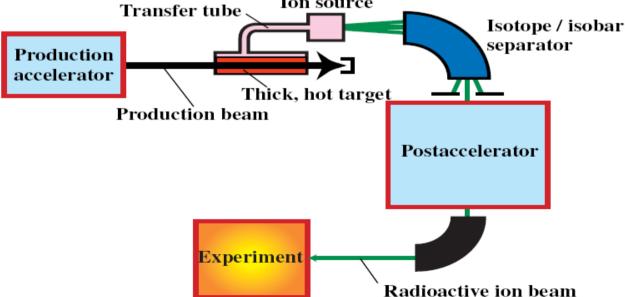
East Lansing, MI 48824, USA

13th International Workshop on RF Superconductivity October 15, 2006, Peking University, Beijing, China

Outline

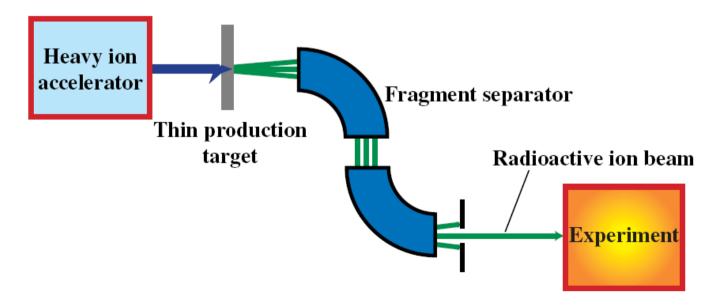
- Low-Energy Rare Isotope Beams (RIBs) production
- Planned Low-Energy RIBs Facility at NSCL
- Re-accelerator
 - Design considerations
 - Accelerator system
 - Beam dynamics
 - Current status and future plan
- Summary

Low-Energy RIB Production

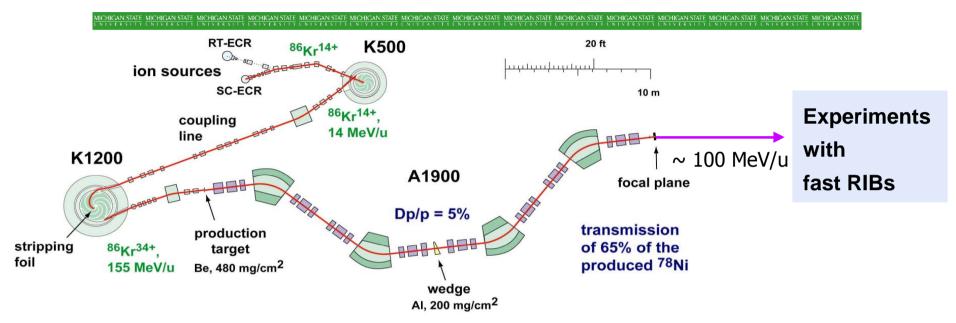

- Strong demand from nuclear science for high quality low-energy RIBs for:
 - Precision mass measurements & Laser spectroscopy
 - Precision decay studies & Low energy coulomb excitations
 - Transfer reaction studies of astrophysical reactions
- Two RIB production methods
 - Isotope Separation On-Line (ISOL)
 - Produced at ~ rest
 - REX-ISOLDE & TRIUMF
 - Projectile Fragmentation
 - Produced at ~ 50 MeV/u
 - NSCL/MSU

ISOL Facility Concept

- UNIVERSITY UNIVERSITY UNIVERSITY UNIVERSITY UNIVERSITY UNIVERSITY UNIVERSITY UNIVERSITY UNIVERSITY UNIVERSITY
 - High beam quality and low beam energy
 - Limited to longer life time $(\tau > 1s)$
 - Isotope extraction and ionization efficiency depend on chemical properties of element
 - The most neutron-rich isotopes will have too low intensities and too short lifetimes to be suitable for reacceleration

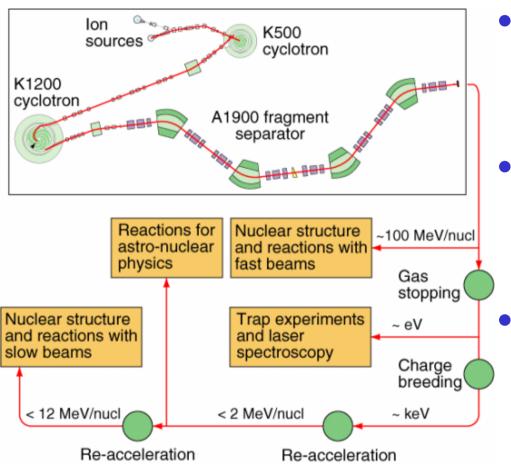

 Transfer tube.

 Ion source



Projectile Fragmentation Facility Concept

- Modest beam quality and high beam energy (E/A > 50 MeV/u)
- Suitable for short-lived isotopes ($\tau > 10^{-6}$ s)
- Physical method of separation, no chemistry
- Low-energy beams are difficult (emittance too large)


Fast RIBs Production at the NSCL

- In-flight particle fragmentation method
 - Coupled cyclotrons produce high energy primary beams
 - Production target produce RIBs at velocity
 - A1900 Fragment Separator separate RIBs in-flight
 - Experiments performed with fast RIBs
 - Nuclear structure/Nuclear reactions

Low-Energy RIBs at the NSCL

MICHIGAN STATE MICHIGAN STATE MICHIGAN STATE MICHIGAN STATE MICHIGAN STATE MICHICAN STATE MICHIGAN STATE MICHIG

- Prototype facility planned for stopping and reaccelerating RIBs produced and separated in-flight
- Important step toward a next-generation rare-isotope facility in the United States

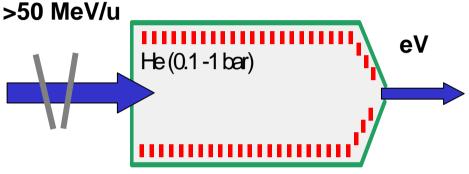
Three key steps:

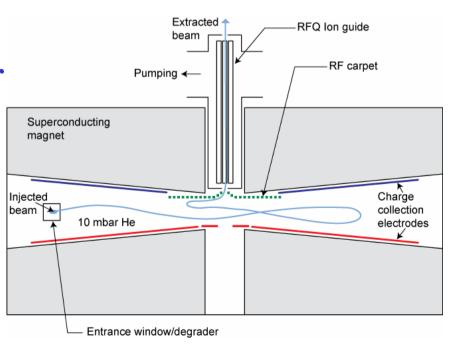
- Gas stopping
- Charge breeding
- Re-acceleration

Gas Stopping Method

• Linear Gas Cell – works but has limitations

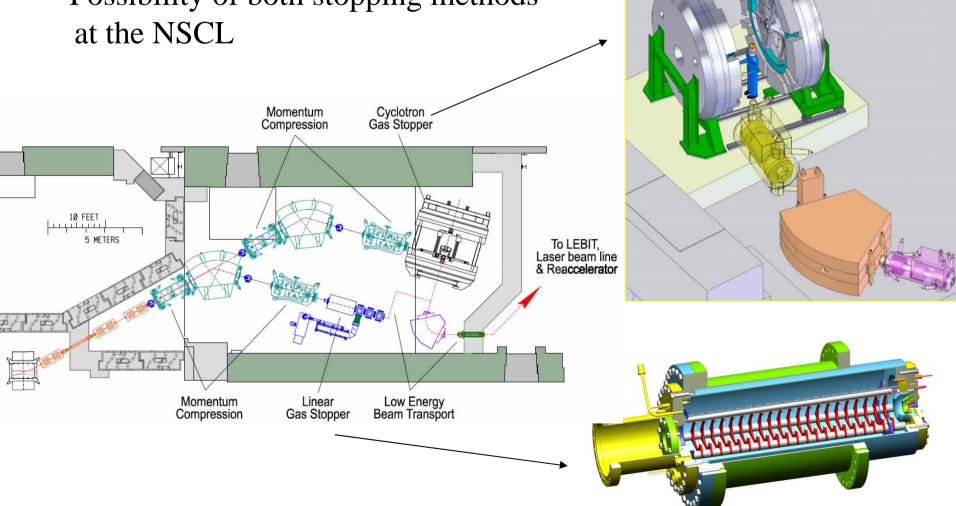
• Intensity-dependent extraction efficiencies


• Extraction time of ~100 ms

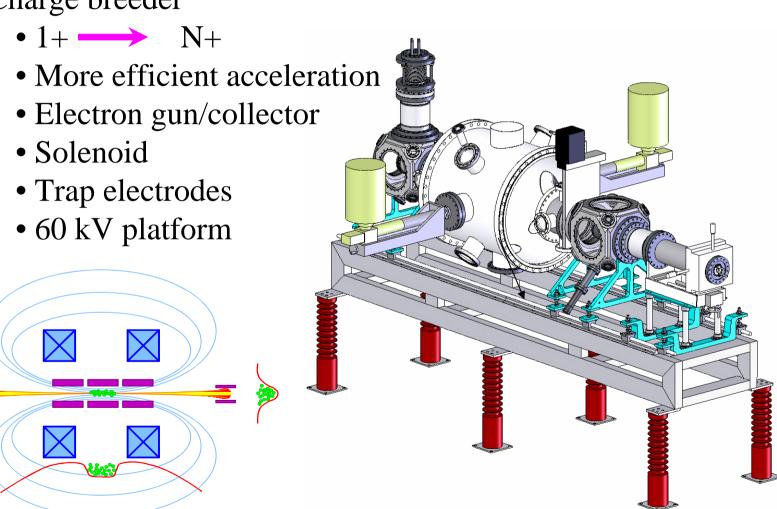

• Low stopping efficiencies for light beams

• "Cyclotron" Gas Stopper – under development

- Shorter extraction times
- Higher beam rate capability


Georg Bollen/NSCL User Workshop 2007

NSCL Gas Stopping Plan


• Possibility of both stopping methods

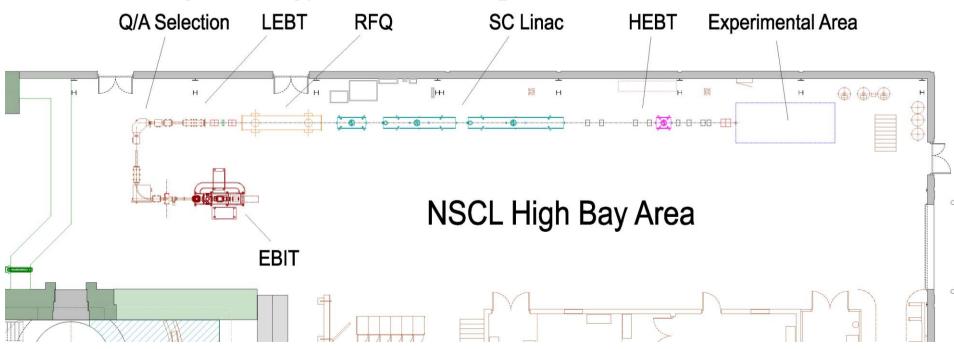
Electron Beam Ion Trap (EBIT) Charge-Breeder

MICHIGAN STATE MICHIG

• Charge breeder

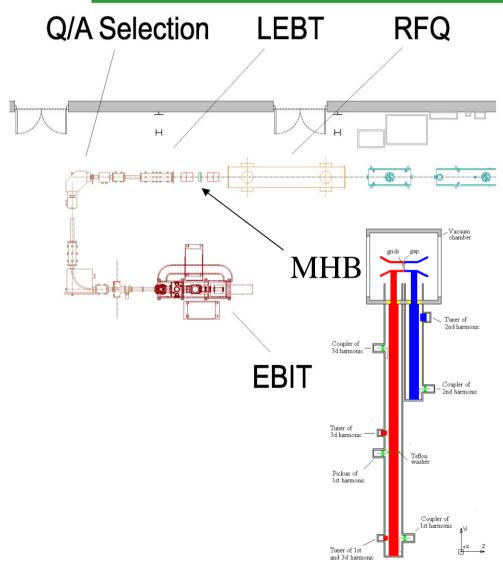
MSU Reaccelerator Beam Specifications

MICHIGAN STATE MICHIG


Input Beam Parameters (From EBIT)		
Energy	12 keV/u	
Q/A	0.2 - 0.4	
Transverse Emittance (normalized)	0.6 π mm-mrad	
Energy Spread	± 0.2 %	
Output Beam Parameters (On target)		
Energy Variability	From 0.3 to 3.0 MeV/u	
Bunch Width on Target	~ 1 ns	
Energy Spread on Target	~ 1 keV/u	
Beam Size on Target	~ 1 mm	

MSU Reaccelerator and RIA/ISF

- Design benefits from past RIA driver linac R&D efforts
 - Many similar components
 - Design experience
 - Beam simulation tools
 - SRF cavity and cryomodule prototyping
- Design and construction of the MSU reaccelerator will provide valuable experience for the future MSU Isotope Science Facility (ISF)

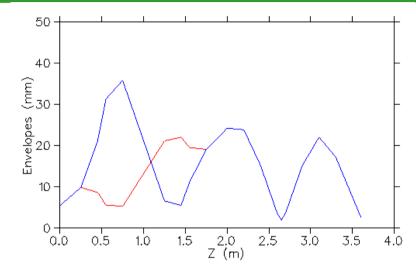

MSU Reaccelerator Layout

- Low Energy Beam Transport (LEBT)
- Radio Frequency Quadrupole (RFQ)
- Superconducting (SC) Linac
- High Energy Beam Transport (HEBT)

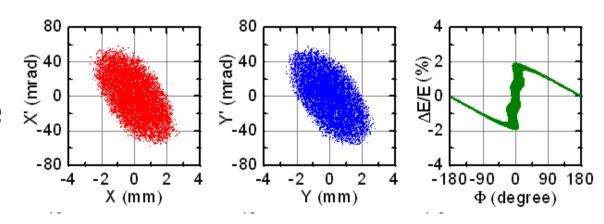
Low Energy Beam Transport

MICHIGAN STATE MICHIG

• Transport, bunch and match RIBs into RFQ


- 4 electrostatic quadrupoles
- 2 Superconducting solenoids
- Multi-harmonic buncher (MHB)
 - Three harmonics
 - High bunching efficiency: ~ 82%
 - Two $\lambda/4$ resonators

Low Energy Beam Transport


MICHIGAN STATE MICHIG

Beam simulated using RIAPMTQ

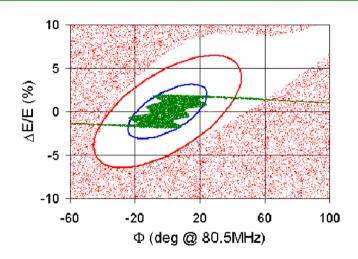
Beam envelopes in the LEBT

Horizontal, vertical and longitudinal phase spaces at the exit of the LEBT

Reaccelerator RFQ

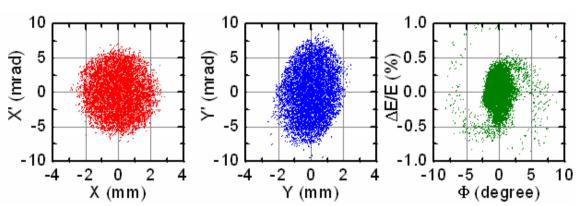
- CW operation
- Room temperature structure
- Achieve small longitudinal emittance
 - $\sim 0.25 \pi \text{ kev/u-ns}$
 - External multi-harmonic buncher
- Enhanced acceleration efficiency
 - Shortened gentle bunching section
- Frequency: 80.5 MHz
- Length: 3.5 m
- Input energy: 12 keV/u
- Output energy: 600 keV/u

RFQ Main Parameters


MICHIGAN STATE MICHIG

Charge to mass ratio, Q/A	0.2 - 0.4
Max. Intervane voltage (kV)	86.2
Peak electric field (MV/m)	16.7
Peak field (E _{kilpatrick})	1.6
Number of cells	94
Synchronous phase (degree)	-20
Modulation factor	1.15→2.58
Average radius (mm)	7.3
Tip radius (mm)	6.0
Focusing strength	4.9

RFQ Beam Dynamics


MICHIGAN STATE MICHIG

The longitudinal acceptance ($\sim 0.8~\pi$ keV/u-ns) and beam phase space at the entrance of the RFQ

Horizontal, vertical and longitudinal phase spaces at the exit of the RFQ

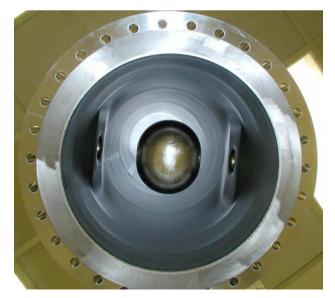
$$\varepsilon_{z}(90\%) = \sim 0.29 \ \pi$$
 keV/u-ns

Superconducting Linac

- Acceleration or deceleration of the RIBs to the
 - desired energy
 - RFQ output energy: 600 keV/u
 - Final energy: 300 keV/u ~ 3 MeV/u
 - Maintain beam quality
- SC linac advantages
 - Requires very little rf power
 - High accelerating gradient for CW operation (100% duty factor)
 - Better operational flexibility and availability

Two SRF Cavity Types Used

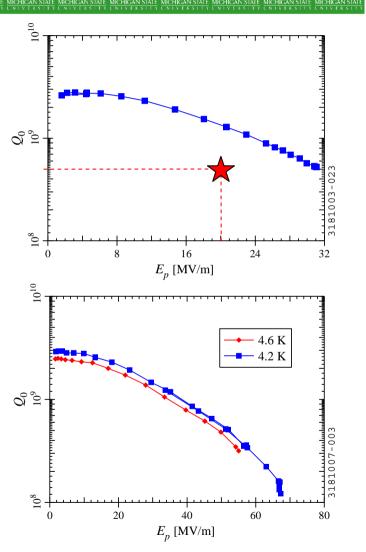
MICHICAN STATE MICHIGAN STATE MICHIGAN STATE MICHICAN STATE MICHIC



Туре	λ/4	λ/4
Optimum β	0.041	0.085
Frequency	80.5 MHz	80.5 MHz
Epeak	16.5 MV/m	20.0 MV/m
Vacc	0.46 MV	1.18 MV
Eacc	4.84 MV/m	5.62 MV/m
Bpeak	28.2 mT	46.5 mT
Temperature	4.5 K	4.5 K
Length	0.095 m	0.21 m
Aperture	30 mm	30 mm

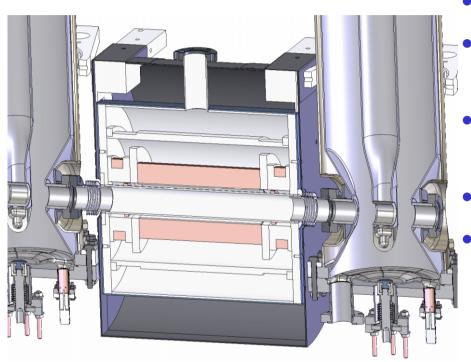
β_{opt} =0.085 Prototype Cavity

β_{opt} =0.041 Prototype Cavity


SRF Cavity Prototype R&D

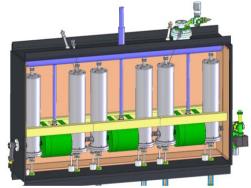
• QWR β_{opt} =0.085 prototyped and tested in 2003

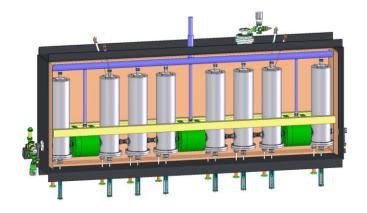
• Q_0 : 5×108


• E_p: 20 MV/m

• QWR β_{opt} =0.041 prototyped and tested in 2007 – to be presented at Tuesday poster session

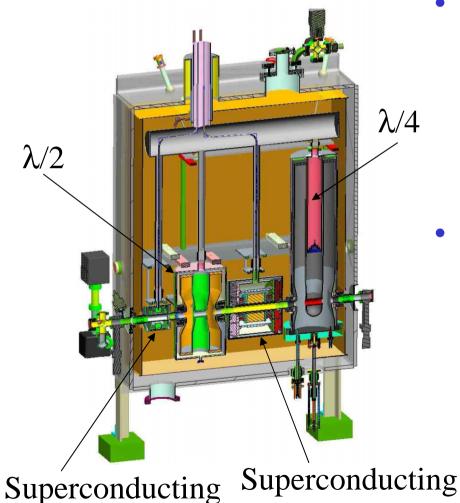
Transverse Focusing – Superconducting Solenoid




- **Symmetric focusing**
- Allow more cavities per cryostat
- 2 dipole corrector coils for central orbit correction
- Peak magnetic field: 9T
- Adjacent to superconducting cavities
 - Active end bucking coils and niobium shield to minimize stray magnetic field
 - Obtain ~10⁻⁶ reduction in B field

Superconducting Linac Cryomodules

MICHIGAN STATE MICHIG



- 1st Cryomodule
 - 2 Superconducting solenoids
 - 1 $\lambda/4$ SC cavity, $\beta_{opt}=0.041$
 - Transverse and longitudinal matching
- 2nd Cryomodule
 - 3 Superconducting solenoids
 - 6 $\lambda/4$ SC cavities, $\beta_{opt}=0.041$
 - Acceleration/deceleration: 1.2/0.3 MeV/u
 - 3rd Cryomodule
 - 3 Superconducting solenoids
 - 8 $\lambda/4$ SC cavities, $\beta_{opt}=0.085$
 - Acceleration/rebunching

Superconducting Linac Prototype Cryomodules

MICHIGAN STATE MICHIG

Quadrupole

Solenoid

• 80.5 MHz β_{opt} =0.085, λ /4 cavity

• 322 MHz β_{opt} =0.285, λ /2 cavity

Prototype cryomodule fabricated

• Superconducting solenoid

• Superconducting quadrupole

Testing in progress

• Cavity performance

• Magnet field effect on cavities

• RF frequency stability, amplitude and phase controls

Will compare with vertical test results

SC Linac Prototype Cryomodules

MICHIGAN STATE MICHIG

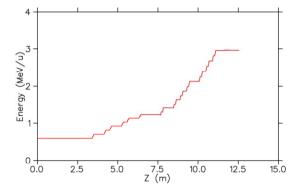
(a) cold mass

(b) top plate

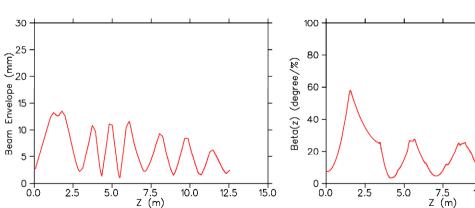
(c) inner MLI

(d) 77 K shield

(e) outer MLI


(f) vacuum vessel

Superconducting Linac Performance - [1]

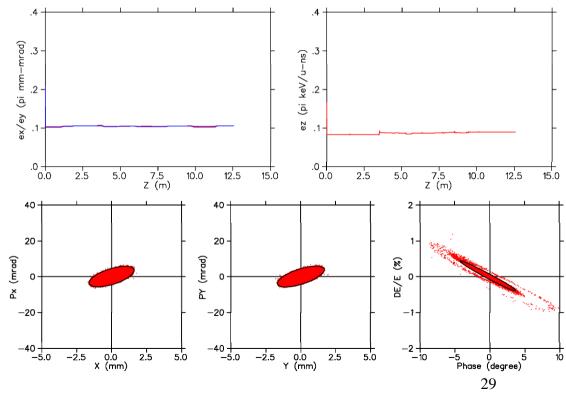

MICHIGAN STATE MICHIG

• Beam simulations using IMPACT (~3 MeV/u)

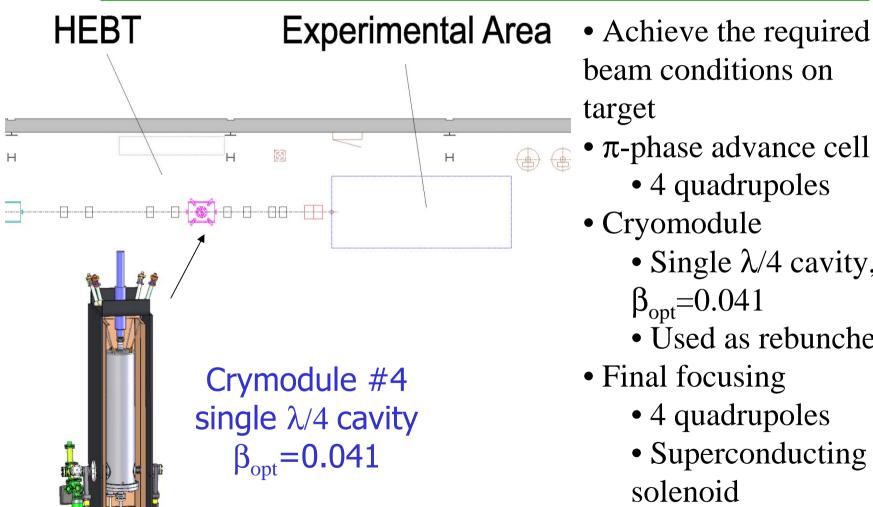
Beam energy gains along the SC linac

Beam transverse envelopes and longitudinal beta function along the SC linac

12.5


Superconducting Linac Performance - [2]

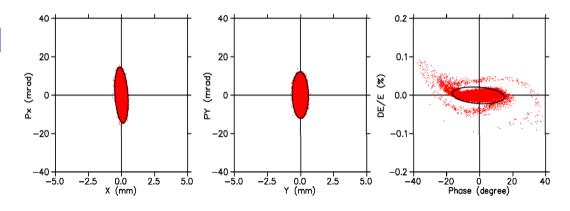
MICHIGAN SIALE MICHIG


- Adequate transverse and longitudinal acceptance
- No beam loss
- No transverse or longitudinal rms emittance growth

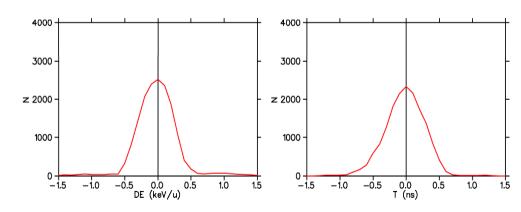
Transverse and longitudinal rms emittances along the SC linac

Horizontal, vertical and longitudinal phase spaces at the exit of the SC linac

High Energy Beam Transport – [1]


- beam conditions on target
- π -phase advance cell
 - 4 quadrupoles
- Cryomodule
 - Single $\lambda/4$ cavity, $\beta_{\text{opt}} = 0.041$
 - Used as rebuncher
- Final focusing
 - 4 quadrupoles
 - Superconducting solenoid

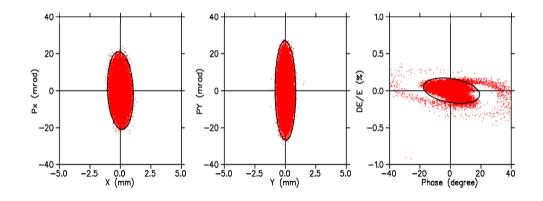
High Energy Beam Transport – [2]


MICHIGAN SIALE MICHICAN SIALE MICHIC

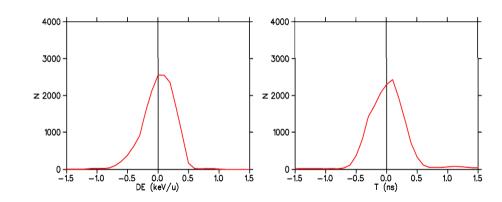
- RIBs accelerated to ~ 3.0 MeV/u
 - ~88% of the RIBs within 1 ns and 1 keV/u

Horizontal, vertical and longitudinal phase spaces on target

Energy spread and bunch width on target

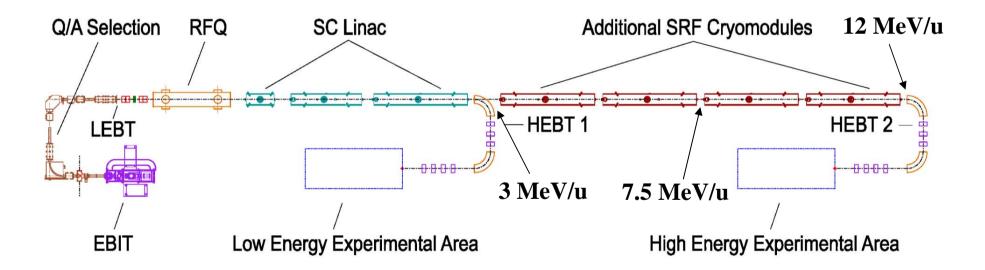


High Energy Beam Transport – [3]


TO THE PROPERTY OF THE PROPERT

- RIBs decelerated to ~ 0.3 MeV/u
 - ~89% of the RIBs within 1 ns and 1 keV/u

Horizontal, vertical and longitudinal phase spaces on target



Energy spread and bunch width on target

Future Upgrades Possible

- Phase I: $0.3 \sim 3.0 \text{ MeV/u} \text{In progress}$
- **Upgrades:** 0.3 ~ 12 MeV/u
 - Additional SRF cryomodules
 - NSCL High Bay Area expansion
 - New experimental areas

MSU Reaccelerator - Status

- Baseline accelerator system defined
- End-to-end beam simulations performed
- RFQ construction expected to be complete in 2009
- Superconducting cavity & cryomodule prototyping
 - test and design ongoing
- Experimental apparatus planning underway
- Studies of beam diagnostics and realistic beam tuning scenarios ongoing

Planned Low-Energy RIB Facility at the NSCL

- R&D for gas stoppers, EBIT charge-breeder on going
- The project expected to complete by 2009
- Will be the first facility of creating fast RIBs in-flight, stopping, charge-breeding, and re-accelerating them efficiently and with minimum loss

