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Abstract

In this paper we treat the problem of beam dy-
namics optimization as a control theory problem. We
consider different mathematical models of optimiza-
tion. The approach to solving optimization problem
for charged particle dynamics in accelerators includes:
construction of mathematical model of controlled dy-
namical process; choice of control functions or param-
eters of optimization; construction of quality function-
als, which allow efficient evaluation of various charac-
teristics of examined controlled motion; analytical rep-
resentation of the functional variations, which allow to
construct various methods of optimization for quality
functionals; construction of methods and algorithms
of optimization. Problem of statement is considered
on the pattern of RFQ channel.

INTRODUCTION

Mathematical methods of modeling and optimiza-
tion are extensively used in many fields of science and
technology. Development of specialized software for
various applications is of more and more importance.
A special class of tasks attracting attention of numer-
ous researches includes the problems associated with
the beam dynamics optimization in accelerator [1–13].
There are not the general methods of accelerating and
focusing structures optimization. However as the de-
mand to output beam parameters are progressively in-
creasing it is needed to develop a new approaches and
methods to solve these problems. In the paper the dif-
ferent mathematical control models describing beam
dynamics are presented. Especially we consider the
problems related to charged particles interaction. In
this case we investigate the controlled dynamic pro-
cess described by a system of integro-differential equa-
tions. The optimization methods are developed for
the different functionals concerned with the quality of
beam [3–12]. They are used for solution of various
beam dynamics problems in. In particular, we investi-
gate the optimization problem of a radial matching
section in RFQ channel. We consider the problem
of construction self-consistent distribution for charged
particle beam in magnetic field too [14–19].

MATHEMATICAL OPTIMIZATION
MODELS

The problem of beam control of interacting par-
ticles, which dynamics is described by integro-

differential equations, is considered. Let us assume
that evolution of particle beam is described by equa-
tions

dx/dt = f(t, x, u) (1)

f(t, x, u) = f1(t, x, u)+

+

∫
Mt,u

f2(t, x, yt)ρ(t, yt)dyt, (2)

∂ρ

∂t
+

∂ρ

∂x
f(t, x, u) + ρdivxf(t, x, u) = 0, (3)

x(0) = x0 ∈ M0, ρ(0, x) = ρ0(x). (4)

Here t is is the time; x is n-vector of phase coordi-
nates; u = u(t) ∈ D is r-dimensional control vector-
function; D is the set of admissible control functions;
ρ = ρ(t, x) is the particle distribution density in the
phase space; f1 is n-dimensional vector-function de-
termined by external electromagnetic fields; f2 is n-
dimensional vector-function associated with the par-
ticle interactions; the set Mt,u is the cross-section of
the trajectory set. It is obtained by time shift of the
initial set M0 through solutions of equation (1) with
given control u = u(t). The set M0 is a given set in
the phase space, which describes the set of initial states
for a charged particle beam at the initial time moment.
The function ρ0(x) is a given function describing the
particle distribution density at the moment t = 0. The
equations (1)-(2) can be considered as Vlasov equa-
tions. We meet with these equations if interaction be-
tween particles, for example the Coulomb repulsion, is
taken into account. Let us introduce a functional

I(u) =

∫ T

0

∫
Mt,u

φ(t, xt, ρ(t, xt), u)dxtdt+

+

∫
MT,u

g(xT , ρT (T, xT ))dxT → min
u∈D

, (5)

characterizing the dynamics of the process. Here φ
and g are given non-negative functions, T is fixed.
Consider the minimization problem of functional (5).
Analizing various systems which are designed for accel-
eration, focusing and transporting of charged particle
beams, it should be noticed that electrical and mag-
netic fields can be treated in a certain structural and
parametric form. Thus certain components and pa-
rameters of electromagnetic fields and geometric sys-
tems of accelerating or focusing can be taken as control
variables. The developed approach can be applied to
another kind of functionals:

I(u) = Φ(µ
(1,1)
ks , . . . , µ

(i,j)
ks , . . . , µ

(n,n)
ks ), (6)
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where

µ
(i,j)
ks =

∫
Mt,u

(xi − xi)
k(xj − xj)

sρ(t, xt)dxt, (7)

xi =

∫
Mt,u

xiρ(t, xt)dxt, i, j = 1, . . . n, j ≥ i, (8)

or

I(u) = max
t∈TN∈[0T ]

max
x∈Mt,u

φ(t, x, ρ(t, x)) → min
u∈D

. (9)

OPTIMIZATION OF RADIAL
MATCHING SECTION FOR RFQ

CHANNEL

Consider the radial matching problem in RFQ ac-
celerator. Let ellipse matrices Gx(t, φ0) and Gy(t, φ0),
depending on time t and phase φ0 , describe beam dy-
namics in radial matching section. Suppose, that t = 0
corresponds to the entrance into the radial matching
section, and t = T corresponds to the entrance into the
regular part of accelerator. Suppose also, that accep-
tances of the regular part of the accelerator are known,
i.e. the following matrices are given:

Gx(T, φ0) = Gx,T (φ0), Gy(T, φ0) = Gy,T (φ0). (10)

The optimization problem for the radial matching sec-
tion is to find a function a(τ), i.e. law of the radius
change along the matching sections, providing under
the conditions (10) the maximum possible overlapping
of families of ellipses at the entrance of the radial
matching section [3, 6, 7].

METHOD OF SOLUTION

Let’s consider the following functional which char-
acterizes the quality of the matching section by mis-
match of ellipses Gx(0, φ0) and Gy(0, φ0) with given
ellipses Bx and By:

J(a) = max
φ0

λ−1
x (φ0) + max

φ0

λ−1
y (φ0), (11)

where
λ−1
x (φ0) = λ−1(Gx(0, φ0), Bx), (12)

λ−1
y (φ0) = λ−1(Gy(0, φ0), By). (13)

Here λ = min(λ1, λ2) is a minimum eigenvalue of a
cluster of quadratic forms generated by a pair of el-
lipses with the matrices G and B:

χ(λ) = det(G− λB) = 0, χ(λ1) = χ(λ2) = 0. (14)

The value of the inverse minimum eigenvalue charac-
terizes the degree of mismatch pairs of ellipses. In the
case of fully identical ellipses, this value is equal to
unity. So always λ−1 ≥ 1.

Figure 1: Acceptance without radial matching section,
(x, dx/dz,Ex = 0.050892 π· cm·mrad)

Figure 2: Acceptance without radial matching section
(y, dy/dz,Ey = 0.052122 π· cm·mrad)

Matrices Bx and By describing the desired phase
portrait of the beam at the beginning of the matching
section.

The problem of minimizing the functional (11) is the
minimax optimization problem.

The analytical representation [6, 7] of the variation
of the functional (11) were used to find geometric pa-
rameters of radial matching section of the RFQ accel-
erator of protons (initial energy 95keV, output energy
5 MeV, intervane voltage 100kV, RF field frequency
352 MHz, initial cell length 6.06 mm). Several of the
possible choices of the law of variation of the channel
radius along the radial matching section are presented
in Fig. 5, 8, 11. In Fig. 1, 2 the RFQ acceptances
without radial matching section are shown. The illus-
trations of effect of the radial matching sections (with
channel radii presented at Fig. 5, 8, 11) are shown
in Fig. 3-4, Fig. 6-7, Fig. 9-10 (correspondingly). The
first variant (Fig. 3-5) is rather usual and requires con-
verging ellipses at the entrance of the radial matching
section. But the two others give us unusual results
with neutral and divergent input ellipses: Fig. 6-8 and
Fig. 9-11.
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Figure 3: Acceptance with radial matching section
(x, dx/dz,Ex = 0.18393 π· cm·mrad)

Figure 4: Acceptance with radial matching section
(y, dy/dz,Ey = 0.16571 π· cm·mrad)

Figure 5: Radius of channel in radial matching section

SELF-CONSISTENT
DISTRIBUTIONS

Consider nonrelativistic cylindrical beam in uniform
longitudinal magnetic field. Assume that particles are
distributed uniformly on the longitudinal coordinate z,
and have the same longitudinal velocity. Such beam
can be described by four-dimensional particle distribu-
tion in the phase space of the transverse motion. The
well-known example is the Kapchinsky-Vladimirsky
distribution [20].

Figure 6: Acceptance with radial matching section
(x, dx/dz,Ex = 0.17945 π· cm·mrad)

Figure 7: Acceptance with radial matching section
(y, dy/dz,Ey = 0.16955 π· cm·mrad)

Figure 8: Radius of channel in radial matching section

Additionally assume that particles are evenly dis-
tributed on azimuthal angle φ and on phases of
their trajectories θ. Then instead of four-dimensional
distribution in the phase space, we can consider
two-dimensional distribution in some two-dimensional
cross-section of the phase space corresponding to the
fixed values of φ and θ.

Let us take integrals of the transverse motion

M = r2(ω0 + φ̇), H = ṙ2 + ω2r2 +
M2

r2
,
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Figure 9: Acceptance with radial matching section
(x, dx/dz,Ex = 0.18023 π· cm·mrad)

Figure 10: Acceptance with radial matching section
(y, dy/dz,Ey = 0.16834 π· cm·mrad)

Figure 11: Radius of channel in radial matching sec-
tion

as coordinates in this cross-section. By this reason,
we will regard this cross-section as the space of the
integrals of motion. Here ω2 = ω2

0 − eϱ0/(mε0),
ω0 = eBz/(2m), e and m are charge and mass of the
particles, ϱ0 is spatial density of the particles inside
the beam cross-section, ε0 is electric constant, Bz is
longitudinal component of the magnetic flux density.

If beam is radially constrained, r < R, where R

is beam radius, the possible values of M and H are
bounded. For uniformly charged beam, the set Ω of
permissible values M and H is described by inequali-
ties [14–19]

2ω|M | < H ≤ M2/R2 + ω2R2, (15)

The set Ω is shown on Fig. 12.

Figure 12: The set Ω for the uniform beam. The curve
1 represents the upper boundary of the set Ω : H =
M2/R2 + ω2R2. The segments 2 represent the lower
boundary of the set Ω : H = 2ω|M |.

The simplest known distribution is the Brillouin
flow [21]. For this distribution, all particles have the
same values of integrals M and H : M = 0, H = 0.

If we specify particle density f(M,H) in Ω, we get
some self-consistent distribution.

When particles are uniformly distributed on seg-
ment AB, we get well-known Kapchinsky-Vladimirsky
distribution. For this case, distribution density in the
space of motion integrals is the simple layer which sup-
porter is segment AB.

Another example is so called ”rigid rotator distri-
bution” [22]. In this case, particles are uniformly dis-
tributed on some segment A′B′ which is tangent to
the upper boundary (15). KV distribution is a partic-
ular case corresponding to zero slope of segment A′B′.
The mean angular momentum of the ”rigid rotator
distributions” is not equal to zero, except for the KV
distribution. This can be seen from Fig. 12 where the
parts of the segment A′B′ lying on the left and on the
right of the axis H are not equal.

The beam is uniformly charged for all these distri-
butions. By this reason, if we take any linear combina-
tion of these distributions, we get uniformly charged
beam. It is easy to take such combination, that the
mean angular momentum of particles will be equal to
zero. Therefore such distribution can be taken as a
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model of a real beam, which is launched with the zero
mean angular momentum.

Beam with slowly varied radius can be described
analogously [17–19]. In this case, we take another in-
tegral of motion I instead of H. Integral I can be ex-
pressed through dynamical variables of a particle and
the beam envelope. For this case, the set of permissible
values of M and I looks like the set Ω on Fig. 12.

CONCLUSION

Mathematical models for beam dynamics optimiza-
tion were presented. They may be applied to different
dynamical systems.The optimization approach to find-
ing geometric parameters of radial matching section is
considered. It should be noted, that the proposed ap-
proach can be applied to optimize the transverse dy-
namics in accelerators if the dynamics is described by
linear or nonlinear equations. In the case of nonlinear
equations it is needed to consider RMS characteristics
of the beam. In particular, this method can be used
to minimize the growth of the effective emittance in
the accelerators.
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