
FEEDBACK DESIGN METHOD REVIEW AND COMPARISON *

E. Onillon, BNL, Upton, NY

Abstract

Different methods for feedback designs are compared.
These includes classical Proportional Integral Derivative
(P. I. D.), state variable based methods like pole
placement, Linear Quadratic Regulator (L. Q. R.),
H_infinity and µ-analysis. These methods are then
applied for the design and analysis of the RHIC phase
and radial loop, yielding a performance, stability and
robustness comparison.

1 INTRODUCTION

In the last two decades, new developments in control
theory have been made, particularly in the field of state
space based techniques like 2H  or ∞H . The RHIC
phase and radial loop have been designed using an 2H
approach (L. Q. R.), the state variables being beam
phase, radius and the integral of the radius error. Studies,
based on an ∞H  approach, have been performed for a
new design approach for those loops.

2  DESCRIPTION OF THE SYSTEM
The main variables used to describe the system are [1]:
ϕ the instantaneous phase deviation of the bunch from
the synchronous phase, Rδ  the variations of the beam
radius and rfδω  the RF frequency deviation, b a scaling
factor). The cavity transfer function is assumed to be the
identity
These variables are related by the two following transfer

functions (Fig. 1) [1]: 
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Figure 1: Block diagram

The system represented in Fig. 1 can be described using

two state variables: 
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A third one, dt)RR(x steer3 ∫ −= , is introduced to force

the radius to follow its reference steerR . These state

variables, which are all observed, lead to the state space
representation:
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 (eq 1)

3 ∞H AND MIXED SENSITIVITY

APPROACH

3.1  Sensitivity Functions and Loop Shaping

If we consider the following block diagram [2] where
K(s) is a feedback controller and G(s) the transfer matrix
of the system,

Figure 2: Sensitivity Function diagram

the transfer matrices relating the reference to the error ε
and to the output y are respectively

( ) 1)s(K)s(GI)s(S −+= and

( ) )s(SI)s(K)s(G)s(K)s(GI)s(T 1 −=+= −

S(s) and T(s) are known respectively as the sensitivity
function and the complementary sensitivity function.
From that diagram, one can see that
- a good reference tracking and a good rejection of the

perturbation pert are obtained when S and SG are
small

- the command effort is small when KS is small
- a good noise rejection is obtained when T is small
The gain of a transfer matrix, at a given frequency ω,

will be characterized by its upper σ  and lower σ
singular values.
A transfer matrix G will be characterised by its ∞H

norm defined as its biggest singular value:

( )( )ωσ=
ω

∞ jGsup:G .

To design a feedback matrix K that matches the
performance and robustness criteria, one will try to
minimize S at low frequency (S behaves like the identity
at high frequencies), and T at high frequency (T behaves
like the identity at low frequencies), by choosing two
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weight matrices 1W  and 3W  that correspond to the

shape of S and T or the open loop KG.
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two requirements are combined into a single infinity

norm specification of the form 1T
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, leading to the augmented

plant:

Figure 3: Augmented plant

3.2 Case of the phase and radial loop

1
1W −  was chosen to be:

























++
++

++
++

++
++

632

8422

632

8422

632

632

103s103.2s

101s108s10
00

0
103s103.2s

101s108s10
0

00
10s109.1s

104.1s10.2s

and

1
3

−W :

( ) 















+

+

232

26

s/103.9s1000

0s/10300

00)100s/(8

The system having a resonance at sω , a bilinear
transform has been performed to avoid a pole zero
cancellation. A circle, which should contain the open
loop poles, is defined [3]. The following results have
been obtained:

Figure 4: Step response and open loop Bode plot

The system settles in 10 ms. The phase and gain margins
are respectively: 38 degrees and 9 dB.
The closed loop system is now:

Figure 5: Closed loop system

KR(s), Kϕ, K  are the three feedback transfer functions:

Figure 6: Controller Bode plot-

3.3  Robustness and µ analysis

One advantage of the previous approach is the ability to
take into consideration the uncertainties on parameters or
neglected dynamics. In the case of the phase and radial
loop, the synchrotron frequency varies during

acceleration:   
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represented as follows:

Figure 7: sω  representation

The phase radial system, with no integral action, can
now be represented as follows:

Figure 8: System representation
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∞H controller, one gets the generic M-∆ block diagram:
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 Figure 9: M ∆ bloc diagram

The robustness is a measure of the size of the
perturbation ∆ that will make the system unstable. It
requires the structured singular value µ of M with respect
to the uncertainty ∆. The stability margin is defined as

( )( )
ω

ωµ jM∆max
1

 where

( ) ( ) ( )0det :min(
1

:
=∆−

=∆ MI
M

σ
µ . The following µ

plot was obtained, where max(µ)=0.9 or 11.1max =δ

Figure 10: µ plot (µ as a function of ω in rad/s)

4 LQR APPROACH
Using the state variable representation defined in Eq 1,
we can determine a Linear Quadratic Regulator (LQR),
with the following quadratic performance index:

( )dtRQXXJ rf
T

rf
T∫

+∞

+=
0

2

1 ωω , X being the state

vector, Q minimising the deviation in states and R the
input energy [3]. The Q and R matrices are chosen by the
designer to obtain the desired system dynamic.
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 Figure 11: Step response and open loop Bode plot

This system settles also in 10 ms. The phase and gain
margins are respectively: 90 degrees and infinity
(propriety of LQR). The closed loop system is the same
as in Fig.5 except that ∫K ,K , ϕRK are just gains.

5  CLASSICAL APPROACH
The phase and radial loop are two cascaded loops, the
loop controllers being just classical filters.
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response was obtained:

Figure 12: Step response
(1 phase, 2 radius)

The system of Fig. 13 settles in 15 ms:

Figure 13: Closed loop system

6  CONCLUSION

The ∞H approach allows us to design a controller, by
either shaping the open loop response or by defining a
certain set of uncertainties and perturbations. Its
realization will require the synthesis of three transfer
functions. A robust analysis is then easy to perform.
The LQR approach will lead to a very simple realization:
three gains and good stability margins. If the system is
well known, it can lead to the programming of the
feedback gains by switching to pole placement [4].
The traditional approach allows the decoupling between
the phase and radial loop but the design of the controllers
is more empirical.

7  REFERENCES

[1] RF Beam Control System for the AGS Booster, J. M. Brennan,

BNL – 52438 Formal Report.

[2] Essentials of Robust Control, Kemin Zhou, Prenctice Hall.

[3] R. Y. Chiang, M. G. Safonov, Design of an ∞H  Controller for a

Lightly Damped System using a Bilinear Pole Shifting Transform,

American Contr. Conf, May 90.

[4] The New BNL AGS Phase, Radial and Synchronization Loops, E.

Onillon, J.M. Brennan, EPAC 1996.

Phase Loop

Radial Loop

0 0.01 0.02 0.03 0.04
-1.5

-1

-0.5

0
x 10

-3

in
te

gr
al

0 0.01 0.02 0.03 0.04
0

0.5

1

1.5

ra
di

us

0 0.01 0.02 0.03 0.04
-500

0

500

1000

1500

ph
as

e

10
1

10
2

10
3

10
4

10
5

10
6

-50

0

50

100

150

10
1

10
2

10
3

10
4

10
5

10
6

-250

-200

-150

-100

-50

0 0.005 0.01 0.015 0.02
-1000

-500

0

500

1000

1500

2000
phase

time in s
0 0.005 0.01 0.015 0.02

0

0.2

0.4

0.6

0.8

1

1.2

1.4
radius

time in s

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

w in rad/s

m
u

Rsteer
+

- -

+
Kϕ(s) Bϕ

BR

KR(s)

∆

rfδω K

M

Gmck

1111

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999


