

FEEDBACK DESIGN METHOD REVIEW AND COMPARISON *

E. Onillon, BNL, Upton, NY

Abstract

Different methods for feedback designs are compared. These includes classical Proportional Integral Derivative (P. I. D.), state variable based methods like pole placement, Linear Quadratic Regulator (L. Q. R.), H_∞ and μ -analysis. These methods are then applied for the design and analysis of the RHIC phase and radial loop, yielding a performance, stability and robustness comparison.

1 INTRODUCTION

In the last two decades, new developments in control theory have been made, particularly in the field of state space based techniques like H_2 or H_∞ . The RHIC phase and radial loop have been designed using an H_2 approach (L. Q. R.), the state variables being beam phase, radius and the integral of the radius error. Studies, based on an H_∞ approach, have been performed for a new design approach for those loops.

2 DESCRIPTION OF THE SYSTEM

The main variables used to describe the system are [1]: φ the instantaneous phase deviation of the bunch from the synchronous phase, δR the variations of the beam radius and $\delta\omega_{rf}$ the RF frequency deviation, b a scaling factor. The cavity transfer function is assumed to be the identity

These variables are related by the two following transfer functions (Fig. 1) [1]: $\frac{\varphi}{\delta R} = \frac{B_\varphi \delta\omega_{rf}}{B_R \delta\omega_{rf}}$ with $B_\varphi = \frac{s}{s^2 + \omega_s^2}$

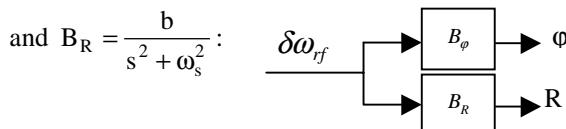


Figure 1: Block diagram

The system represented in Fig. 1 can be described using

two state variables: $\begin{cases} x_1 = \dot{x}_2 = \varphi \\ x_2 = \frac{R}{b} = \frac{1}{s^2 + \omega_s^2} \delta\omega_{rf} \end{cases}$

A third one, $x_3 = \int (R - R_{steer}) dt$, is introduced to force the radius to follow its reference R_{steer} . These state variables, which are all observed, lead to the state space representation:

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{pmatrix} = \begin{pmatrix} 0 & -\omega_s^2 & 0 \\ 1 & 0 & 0 \\ 0 & b & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \delta\omega_{rf} + \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} R_{steer} \quad (\text{eq 1})$$

3 H_∞ AND MIXED SENSITIVITY APPROACH

3.1 Sensitivity Functions and Loop Shaping

If we consider the following block diagram [2] where $K(s)$ is a feedback controller and $G(s)$ the transfer matrix of the system,

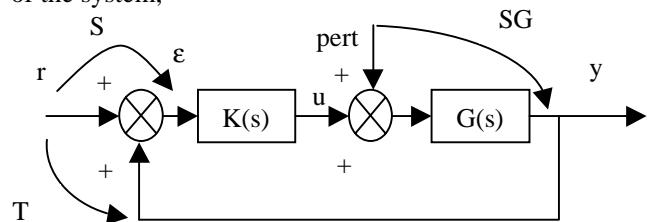


Figure 2: Sensitivity Function diagram

the transfer matrices relating the reference to the error ϵ and to the output y are respectively

$$S(s) = (I + G(s)K(s))^{-1}$$
 and

$$T(s) = (I + G(s)K(s))^{-1} G(s)K(s) = I - S(s)$$

$S(s)$ and $T(s)$ are known respectively as the sensitivity function and the complementary sensitivity function.

From that diagram, one can see that

- a good reference tracking and a good rejection of the perturbation pert are obtained when S and SG are small
- the command effort is small when KS is small
- a good noise rejection is obtained when T is small

The gain of a transfer matrix, at a given frequency ω , will be characterized by its upper $\bar{\sigma}$ and lower $\underline{\sigma}$ singular values.

A transfer matrix G will be characterised by its H_∞ norm defined as its biggest singular value:

$$\|G\|_\infty := \sup_\omega \bar{\sigma}(G(j\omega)).$$

To design a feedback matrix K that matches the performance and robustness criteria, one will try to minimize S at low frequency (S behaves like the identity at high frequencies), and T at high frequency (T behaves like the identity at low frequencies), by choosing two

* Work performed under the auspices of the U.S. Department of Energy

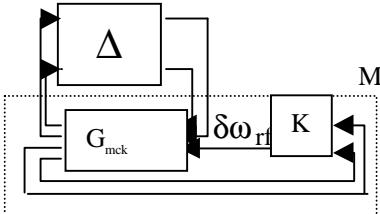
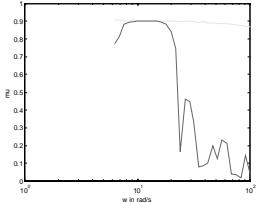


Figure 9: M Δ bloc diagram

The robustness is a measure of the size of the perturbation Δ that will make the system unstable. It requires the structured singular value μ of M with respect to the uncertainty Δ . The stability margin is defined as

$$\frac{1}{\max_{\omega} \mu_{\Delta}(M(j\omega))} \text{ where}$$

$\mu_{\Delta}(M) := \frac{1}{\min(\bar{\sigma}(\Delta) : \det(I - M\Delta = 0)}$. The following μ plot was obtained, where $\max(\mu) = 0.9$ or $\delta_{\max} = 1.11$


 Figure 10: μ plot (μ as a function of ω in rad/s)

4 LQR APPROACH

Using the state variable representation defined in Eq 1, we can determine a Linear Quadratic Regulator (LQR), with the following quadratic performance index:

$$J = \frac{1}{2} \int_0^{+\infty} (X^T Q X + \omega_{rf}^T R \omega_{rf}) dt, \quad X \text{ being the state}$$

vector, Q minimising the deviation in states and R the input energy [3]. The Q and R matrices are chosen by the designer to obtain the desired system dynamic.

With $Q = \begin{pmatrix} 600 & 0 & 0 \\ 0 & 100 & 0 \\ 0 & 0 & 10^6 \end{pmatrix}$ and $R = 10^{-6}$, one gets the

following step radius response and open loop Bode plot:

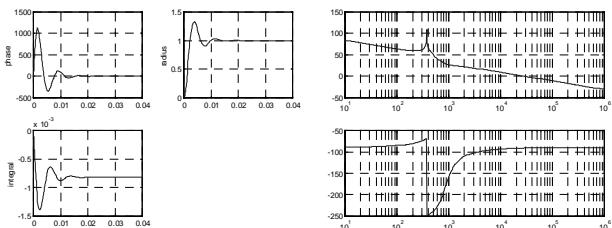


Figure 11: Step response and open loop Bode plot

This system settles also in 10 ms. The phase and gain margins are respectively: 90 degrees and infinity (propriety of LQR). The closed loop system is the same as in Fig.5 except that K_R, K_{φ}, K_J are just gains.

5 CLASSICAL APPROACH

The phase and radial loop are two cascaded loops, the loop controllers being just classical filters.

$$\text{With } K_{\varphi}(s) = 132 \left(1 + \frac{1}{2.2 \cdot 10^{-3} s} + 5.5 \cdot 10^{-4} s \right) \text{ (PID) and}$$

$K_R(s) = 5 \cdot 10^3 \frac{5 \cdot 10^3}{s + 5 \cdot 10^3}$ the following radius step response was obtained:

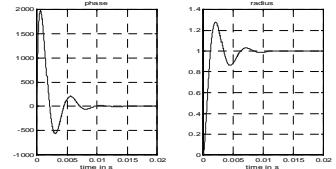


Figure 12: Step response (1 phase, 2 radius)

The system of Fig. 13 settles in 15 ms:

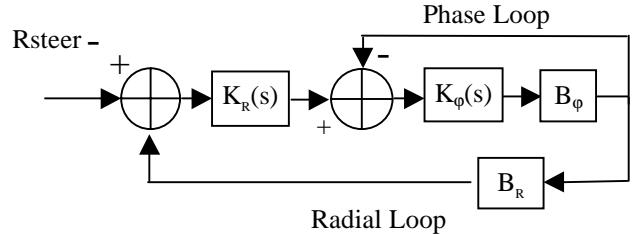


Figure 13: Closed loop system

6 CONCLUSION

The H_{∞} approach allows us to design a controller, by either shaping the open loop response or by defining a certain set of uncertainties and perturbations. Its realization will require the synthesis of three transfer functions. A robust analysis is then easy to perform.

The LQR approach will lead to a very simple realization: three gains and good stability margins. If the system is well known, it can lead to the programming of the feedback gains by switching to pole placement [4].

The traditional approach allows the decoupling between the phase and radial loop but the design of the controllers is more empirical.

7 REFERENCES

- [1] RF Beam Control System for the AGS Booster, J. M. Brennan, BNL - 52438 Formal Report.
- [2] Essentials of Robust Control, Kemin Zhou, Prentice Hall.
- [3] R. Y. Chiang, M. G. Safonov, Design of an H_{∞} Controller for a Lightly Damped System using a Bilinear Pole Shifting Transform, American Contr. Conf, May 90.
- [4] The New BNL AGS Phase, Radial and Synchronization Loops, E. Onillon, J.M. Brennan, EPAC 1996.