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FEEDBACK DESIGN METHOD REVIEW AND COMPARISON *

E. Onillon, BNL, Upton, NY

Abstract

Different methods for feedback designs are compared.
These includes classical Proportional Integral Derivative
(P. 1. D.), sate variable based methods like pole
placement, Linear Quadratic Regulator (L. Q. R.),
H_infinity and p-analysis. These methods are then
applied for the design and analysis of the RHIC phase
and radial loop, yielding a performance, stability and
robustness comparison.

1INTRODUCTION

In the last two decades, new developments in control
theory have been made, particularly in the field of state
space based techniques like H, or H,. The RHIC
phase and radial loop have been designed using an H,
approach (L. Q. R.), the date variables being beam
phase, radius and the integral of the radius error. Studies,
based on an H, approach, have been performed for a
new design approach for those loops.

2 DESCRIPTION OF THE SYSTEM

The main variables used to describe the system are [1]:

¢ the instantaneous phase deviation of the bunch from
the synchronous phase, 3R the variations of the beam
radius and Oy the RF frequency deviation, b a scaling
factor). The cavity transfer function is assumed to be the
identity

These variables are related by the two following transfer
¢ = Bydwy S

functions (Fig. 1) [1]: with B, =
(Fig- 1) [1] OR = Browy ®= s% +w?
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Figure 1: Block diagram
The system represented in Fig. 1 can be described using
15X =0
R 1
E = 600rf

and By =

)

_>R

two state variables: §<2

A third one, x4 :J'(R — Ry )0t, isintroduced to force

the radius to follow its reference Ry, . These state

variables, which are all observed, lead to the state space
representation:
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3 H_AND MIXED SENSITIVITY
APPROACH
3.1 Senditivity Functions and Loop Shaping

If we consider the following block diagram [2] where
K(s) is afeedback controller and G(s) the transfer matrix

of the system,
S pert SG
r As + \ y
u
—»@—» K(9) G(9) >

SN

Figure 2: Sensitivity Function diagram

the transfer matrices relating the reference to the error ¢
and to the output y are respectively

S(9)=(1+G(9K(E)™
T(9) =(1+GOK(9)'GOK(E) =1 -(s)
S(s) and T(s) are known respectively as the sensitivity
function and the complementary sensitivity function.
From that diagram, one can see that
- agood reference tracking and a good rejection of the
perturbation pert are obtained when S and SG are
small
- thecommand effort is small when KSissmall
- agood noisergection is obtained when T is small
The gain of a transfer matrix, at a given frequency w,
will be characterized by its upper o and lower [9)

singular values.
A transfer matrix G will be characterised by its H_,

norm defined as its biggest singular value:
Jol, = supai(c(jod).

To design a feedback matrix K that matches the
performance and robustness criteria, one will try to
minimize S at low frequency (S behaves like the identity
at high frequencies), and T at high frequency (T behaves
like the identity at low frequencies), by choosing two
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weight matrices W; and W, that correspond to the
shape of Sand T or the open loop KG.

o(lje) <[ Wi (i) and o(T(jea))<|ws"(jed] . These
two requirements are combined into a single infinity

norm specification of the form HTy1u1 <1 where by

S
definition T, = @lvvl B leading to the augmented
370

plant:
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Figure 3: Augmented plant
3.2 Case of the phase and radial loop
W, ! was chosen to be:
Hs* +2.10°s+1410° 0 0 H
B s? +1.910%s+10° \ s . . B
o 0 102s? +810%s+110 0 o
O s? +2.310°s+310° O
O 0 0 10%s? +810%*s+110° O
ﬁ s? +2.310%s+310° ﬁ
and
@/(s+100) 0 0 H

w, g 0o 3010°/s? 0 0

H o 0 102(s+9310%)/s2f]
The system having a resonance at g, a bilinear
transform has been performed to avoid a pole zero
cancellation. A circle, which should contain the open
loop poles, is defined [3]. The following results have
been obtained:
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Figure 4: Step response and open loop Bode plot

The system settles in 10 ms. The phase and gain margins
are respectively: 38 degreesand 9 dB.
The closed loop system is now:

Figure 5: Closed loop system

Kr(9), Ky, K, are the three feedback transfer functions:
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Figure 6: Controller Bode plot-
3.3 Robustness and i analysis

One advantage of the previous approach is the ability to
take into consideration the uncertainties on parameters or
neglected dynamics. In the case of the phase and radial
loop, the synchrotron frequency varies during

acceleration: W, = Q§+ @5% which can be
S
represented as follows:

i—p
y

— 8l

w, —Py
0

13

Figure 7. @ representation

The phase radial system, with no integral action, can
now be represented as follows:
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Figure 8: System representation
With 4o 0

0 g
A= 06, 00,6,005 and K  the
Ep 9,0 ' 2 E

H ., controller, one gets the generic M-A block diagram:
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Figure 9: M A bloc diagram

The robustness is a measure of the size of the
perturbation A that will make the system unstable. It
requires the structured singular value p of M with respect
to the uncertainty A. The stability margin is defined as

; where
max 1, (M (jw))
w
1

yA(M):: min(cT(A):det(I —MA:O)' The following p

plot was obtained, where max(p)=0.9 or J,,, =1.11

A\

I

Figure 10: p plot (p asafunction of win rad/s)

4 LQR APPROACH

Using the state variable representation defined in Eq 1,
we can determine a Linear Quadratic Regulator (LQR),
with the following quadratic performance index:

+o00

J:%J‘(XTQX +wrfTRwrf)jt, X being the date

0
vector, Q minimising the deviation in states and R the
input energy [3]. The Q and R matrices are chosen by the
designer to obtain the desired system dynamic.
00 0 O

With Q=00 100 0 [ and R=10"°, one gets the

Ho o 10°H

following step radius response and open loop Bode plot:
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Figure 11: Step response and open loop Bode plot

This system settles also in 10 ms. The phase and gain
margins are respectively: 90 degrees and infinity
(propriety of LQR). The closed loop system is the same
asin Fig.5 except that Kg, Ky, KI are just gains.

5 CLASSICAL APPROACH

The phase and radial loop are two cascaded loops, the
loop controllers being just classical filters.

With K (s)= 132§+ ;3 ¥ 5.510'%% (PID) and
2.210"s
510° . .
Kx(s)=510° the following radius st
R( ) S+ 5103 o] €p
response was obtained: —

Figure 12: Step response
(1 phase, 2 radius)

The system of Fig. 13 settlesin 15 ms:
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Figure 13: Closed loop system
6 CONCLUSION

The H_ approach alows us to design a controller, by
either shaping the open loop response or by defining a
certain set of uncertainties and perturbations. Its
realization will require the synthesis of three transfer
functions. A robust analysisisthen easy to perform.

The LQR approach will lead to avery simple redization:
three gains and good stability margins. If the system is
well known, it can lead to the programming of the
feedback gains by switching to pole placement [4].

The traditional approach allows the decoupling between
the phase and radial loop but the design of the controllers
ismore empirical.
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