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Ab kinetic energy of the particle, calculated from the
stract . . - - .
integration of this new momentum-velocity equation,
Starting from the hypothesis of the invariancy of theshows that all terms depend on the velocity, which
subluminal momentum and applying the beyond-Lorentzontradicts the STR's prediction of the existence of an
transformations we derive a new equation for thassociated rest energy related only to the mass of the
invariant momentum-velocity of particles which can beparticle. Finally, predictions are made concerning the
applied to subluminal or superluminal particles. The&ependence of the momentum and kinetic energy on the
kinetic energy shows a maximum at the velocity of lightelocity of superluminal particles.
and falls at subluminal or superluminal velocities. There

is good agreement with the Newtonian and relativistic 2 BEYOND-LORENTZ
results for particle momentum and energy at subluminal TRANSFORMATIONS
velocities.

Accepting the hypothesis that the velocity of light is

1 INTRODUCTION constant, i. e., does not depend on the reference system,
The Special Theory of Relativity Theory (STR) makegve can write the following transformation equations
use of the Lorentz transformations, whose real solutiol$tween a system reference S and a system S’ that
are limited to velocities below the velocity of lightmoves with a constant speed v in the direction of the
(subluminal velocities). One of the STR's mairfXis X, relative to S:
assertions is that the relativistic momentum is conserved
regardless of the frame of reference. The mass of a 2
particle assumes an energy content and apparently XM - X = Bgx—4Bg —1ct (1)
increases with an increase in its velocity, becoming
infinite at the velocity of light (c). Photons or neutrinos

. . . . X
are thus considered particles with zero rest-mass sine;d t[ -t = By t—4Bg -1 — (2)
that they can travel with limited energies at the velocity C
of light. Recent experiments, however, suggest that
neutrinos are massive particles [1].

When exploring the extreme limits of bunches ofvith
particles, why not to seek more general transformations
that can also be applied above c (superluminal
velocities), including the Lorentz transformation as a
special case? Recently, we demonstrated the existence
of such general transformations which also obey the These equations can be applied to describe light wave
principle of the constancy of ¢ [2]. propagation invariance under uniform translation of S’

In the present work, starting from the hypothesis dflative to S in the x direction for any value of the order
invariant momentum and applying such generdiumber k (k = 1, 2, ...). It can easily be verified for
transformations, we demonstrate the existence of a néabluminal velocities that the above equations can be
equation for the momentum that agrees with the STR@ade as close as is wanted to the Lorentz
predictions for momentum of subluminal phenomena biitansformations by a convenient choice of k (k large).
can also be applied at superluminal velocities. TH#owever, unlike with the Lorentz transformations, the

new solutions are always real for any velocity, including
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particle collisions it was demonstrated that thdrom Newtonian and the usual relativistic formulas.
relativistic momentum can be expressed by [3]:

p=m Ax (3) 4. KINETIC ENERGY
At' We can calculate the kinetic energy from the usual
which, with application of the beyond-Lorentzexpression of the integration of a force F continuously
transformations can be written acting on a particle along the axis x:
as: v
dx
- mv _ _ ) K=[Fdx=[dp —=pv- [padv (5)
p yg mv dt
vV [2
BB_E BB_l v=0
where . is the new correction factor. This equatiorand applying equation (4), we find
lied f loci ith luminal — 2
can be app ied or any ve ocity, either subluminal or K=m c (ch(V) —CDZ(V)) ©6)
superluminal. Figure 1 compares the curves of
momentum versus velocity calculated from this resuith
(equation (4)) and the STR momentum, respectively. ® _ v2
Newtonian momentum is also ploted for reference. 1) = vs C_z
14 \
v
and ®,(v) ZJ.VB — dv
12+ , C
0
. We did not find an algebraic solution to solve the
~ B T . . . .
a integral for ®,(v) but it can easily be numerically
. integrated. The curve of the kinetic energy versus the
This Wofk velocity of the particle shows a maximum at the velocity
\\\ of light which decays at subluminal or superluminal
VN il velocities (see Figure 2 (a)). Again, there is a good

agreement with the STR predictions for subluminal
. velocities. Besides this good fitting, it should be pointed
out that there is a fundamental difference between the
usual relativistic formula for kinetic energy
(K=m c? ((1- Vz/cz)—yz_l)) and the formula
5 7 T 3 T presented by equation (6) since all terri (and @5 )
Velocity (%) in the latter depend on v. Thus, it is demonstrated that
the hypothesis of an energy associated to the mass of the
Figure 1: Momentum versus velocity: Comparison of thearticle in rest in not a necessary condition for obtaining
results of the Newtonian, STR and the present approacthe results foreseen by STR. The mass of the particle
can be assumed invariant with the velocity, being just a
We observe a good agreement between this new resmltiltiplying parameter of the related energy.
and the STR momentum for subluminal velocities. For low velocities (see Figure 2 (b)) the functioig
ThL_Js, great parfc _of_ the subluminal exper_lments thafq ®, may be approximated respectively by
validate the relativistic momentum also confirm the new 5 5
momentum equation. However, this new equation cap, (V) O V" and Dy (V) DEV—. Therefore equation
also be used to foresee the momentum at superluminat 2 2 2
velocities. As we can see, when a patrticle is passing t
light velocity barrier its momentum is strongly
attenuated, as in the_ evanescent transmlss_lon I%Wtonian formula.
particles-waves in tunneling phenomena. The existencerq, q;hjyminal velocities very close to the velocity of
of a very thin spike at v = ¢, with an upwards divergence -
at c- and a strong attenuation at c+ suggests a very h (v DCZ) X _y;/ve have _ that
momentum for luminal particles, but not a limitless®1 0 vg =(1-v“/c) and®, U1 (see Figure
momentum. It should also be observed that in spite @f(a)). In this case, equation (6) reduces to the usual
the momentum tending to zero for superluminatelativistic formula for kinetic energy:
velocities, the velocity of the particle is not reduce 2 2/ 2 -12
since its momentum-velocity relationship differs boﬂ?K Om ¢ (A-v /C ) D

Momentum/mass
o
‘

Newton

I(qé?) is reduced tog 01, 2, which coincides with the
2
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increase in the velocity is an interesting effect because it
is not necessary to increase the energy of the particle to
increases its velocity. On the contrary, the particle needs
to lose energy (by radiation?) to increase its velocity.
The vacuum for superluminal particles behaves as a
superfluid. If the superluminal particle emits light to
lose kinetic energy the emitted photons may be luminal,
thus, not changing the refractive index of the vacuum.
The radiation emitted by the superluminal particle may
be similar to the Cerenkov radiation. In fact, the new
equations presented here may be rewritten for the
propagation of particles in a material medium other than
vacuum (refractive index > 1), thus serving as an
explanation for the Cerenkov radiation in liquid and
solid materials.

Just as in the dynamics of a resonance problem, the
value of the energy of the luminal particle should be
very high due to the singularity at v = ¢, but not infinite.
Other conditions are necessary to calculate its limit.
Equation (6) explicitly shows that the kinetic energy
depends directly on the mass of the particle, thus
particles with larger mass will have to have larger
/] energies to become luminal particles. We did not find
any support in our derivation for the supposition that
luminal particles have to have zero mass.
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5. CONCLUSIONS

(units of me’

Through the use of the beyond-Lorentz transformations
(velocity of light is constant) we derived a new equation
for the invariant momentum-velocity of particles that
can be applied to subluminal or superluminal particles.

Good agreement of this new equation was demonstrated

(for subluminal velocities) with the relativistic

momentum and with Newtonian momentum, in its
respective range of application. For superluminal

0.1 0.2 0.3 0.4 0.5 0.6 particles this new equation foresees that the momentum

Velocity (%) is strongly attenuated with an increase of velocity. The

kinetic energy calculated using this new equation for the
(b) momentum shows a maximum at the velocity of light

and decays at subluminal or superluminal velocities.

Figure 2: (a) Kinetic energy versus velocity: Comparisomhere is also a good agreement with the relativistic and
of Newtonian, STR, and of this approach. Thé\ewtonian results for subluminal velocities. However,

dependence of the functior®; and ®, on velocity there is no need to consider an energy associated with

are also shown. For subluminal velocities there is tge rest-mass of the particle to calculate its kinetic
nergy.

good agreement between this work and the STR!
however, there are no terms independent of the velocity.
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