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Abstract

Starting from the hypothesis of the invariancy of the
subluminal momentum and applying the beyond-Lorentz
transformations we derive a new equation for the
invariant momentum-velocity of particles which can be
applied to subluminal or superluminal particles. The
kinetic energy shows a  maximum at the velocity of light
and falls at subluminal or superluminal velocities. There
is good agreement with the Newtonian and relativistic
results for particle momentum and energy at subluminal
velocities.

1  INTRODUCTION
The Special Theory of Relativity Theory (STR) makes
use of the Lorentz transformations, whose real solutions
are limited to velocities below the velocity of light
(subluminal velocities).   One of the STR's main
assertions is that the relativistic momentum is conserved
regardless of the frame of reference.  The mass of a
particle assumes an energy content and apparently
increases with an increase in its velocity,  becoming
infinite at the velocity of light (c).  Photons or neutrinos
are thus considered particles with zero rest-mass since
that they can travel with limited energies at the velocity
of light.  Recent experiments, however, suggest that
neutrinos are massive particles [1].

When exploring the extreme limits of bunches of
particles, why not to seek more general transformations
that can also be applied above c (superluminal
velocities), including the Lorentz transformation as a
special case?   Recently, we demonstrated the existence
of such general transformations which also obey the
principle of the constancy of c [2].

In the present work, starting from the hypothesis of
invariant momentum and applying  such general
transformations,  we  demonstrate the existence of a new
equation for the momentum that agrees with the STR's
predictions for momentum of subluminal phenomena but
can  also  be  applied  at  superluminal  velocities.     The
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kinetic  energy   of   the   particle,  calculated   from   the
integration of this new momentum-velocity equation,
shows that all terms depend on the velocity, which
contradicts the STR's prediction of the existence of an
associated rest energy related only to the mass of the
particle.  Finally, predictions are made concerning the
dependence of the momentum and kinetic energy on the
velocity of superluminal particles.

2   BEYOND-LORENTZ
TRANSFORMATIONS

Accepting the hypothesis that the velocity of light is
constant, i. e., does not depend on the reference system,
we can write the following transformation equations
between a system reference S and a system S’ that
moves with a constant speed v in the direction of the
axis x, relative to S:
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These equations can be applied to describe light  wave
propagation invariance under uniform translation of  S’
relative to S in the x direction for any value of the order
number k (k = 1, 2, ...).  It can easily be verified for
subluminal velocities that the above equations can be
made as close as is wanted to the Lorentz
transformations by a convenient choice of k (k large).
However, unlike with the Lorentz transformations, the
new solutions are always real for any velocity,  including
superluminal velocities.

3. MOMENTUM-VELOCITY
RELATIONSHIP

Through the conservation of the energy-momentum  in
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particle collisions it was demonstrated that the
relativistic momentum can be expressed by [3]:

                     p m
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which, with application of the beyond-Lorentz
transformations can be written
as:
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where γ B is the new  correction factor.  This equation

can be applied for any velocity, either subluminal or
superluminal.  Figure 1 compares the curves of
momentum versus velocity calculated  from this result
(equation (4)) and the STR momentum, respectively.
Newtonian momentum is also ploted for reference.

Figure 1: Momentum versus velocity: Comparison of the
results of the Newtonian, STR and the present approach.

We observe a good agreement between this new result
and the STR momentum for subluminal velocities.
Thus, great part of the subluminal experiments that
validate the relativistic momentum also confirm the new
momentum equation.  However, this new equation can
also be used to foresee the momentum at superluminal
velocities.  As we can see, when a particle is passing the
light velocity barrier its momentum is strongly
attenuated, as in the evanescent transmission of
particles-waves in tunneling phenomena. The existence
of a very thin spike at v = c, with an upwards divergence
at c- and a strong attenuation at c+ suggests a very high
momentum for luminal particles, but not a limitless
momentum.  It should also be observed that in spite of
the momentum tending to zero for superluminal
velocities, the velocity of the particle is not reduced
since its momentum-velocity relationship differs both

from Newtonian and the usual relativistic formulas.

4. KINETIC ENERGY
We can calculate the kinetic energy from the usual
expression of the integration of a force F continuously
acting on a particle along the axis x:

 K F dx dp
dx

dt
p v p dv
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and applying  equation (4), we find
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We did not find an algebraic solution to solve the
integral for Φ2( )v  but it can easily be numerically

integrated.   The curve of the kinetic energy versus the
velocity of the particle shows a maximum at the velocity
of light which decays at subluminal or superluminal
velocities (see Figure 2 (a)).  Again, there is a good
agreement with the STR predictions for subluminal
velocities.  Besides this good fitting, it should be pointed
out that there is a fundamental difference between the
usual relativistic formula for kinetic energy

( K m c v c= − −−2 2 2 1 21 1(( ) )/ ) and the formula

presented by equation (6) since all terms (Φ1 and Φ2 )

in the latter depend on v.  Thus, it is demonstrated that
the hypothesis of an energy associated to the mass of the
particle in rest in not a necessary condition for obtaining
the results foreseen by STR.   The mass of the particle
can be assumed invariant with the velocity, being just a
multiplying parameter of the related energy.

For low velocities (see Figure 2 (b)) the functions Φ1
and Φ2 may be approximated respectively by
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(6) is reduced to  K m v≅ 1

2
2,  which coincides with the

Newtonian formula.
For subluminal velocities very close to the velocity of

light ( v c≅ − ) we have that

Φ1
2 2 1 21≅ ≈ − −ν B v c( / ) /   and Φ2 1≅   (see Figure

2 (a)).   In this case, equation (6) reduces to the usual
relativistic formula for kinetic energy:

K m c v c≅ − −−2 2 2 1 21 1(( ) )/ .
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Figure 2: (a) Kinetic energy versus velocity: Comparison
of  Newtonian, STR, and of this approach. The
dependence of the functions Φ1 and Φ2 on velocity

are also shown.  For subluminal velocities there is a
good agreement between this work and the STR,
however, there are no terms independent of the velocity.               
(b) For low velocities, Φ1and Φ2 approaches  a
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Surpassing the barrier of the velocity of light the
kinetic energy of the particle diminishes, as illustrated in
Figure 2 (a). The fall in the kinetic energy with an

increase in the velocity is an interesting effect because it
is not necessary to increase the energy of the particle to
increases its velocity.  On the contrary, the particle needs
to lose energy  (by radiation?)  to increase  its velocity.
The vacuum for superluminal particles behaves as a
superfluid.  If the superluminal particle emits light to
lose kinetic energy the emitted photons may be luminal,
thus, not changing the refractive index of the vacuum.
The radiation emitted by the superluminal particle may
be similar to the Cerenkov  radiation.  In fact, the new
equations presented here may be rewritten  for the
propagation of particles in a material medium other than
vacuum (refractive index > 1), thus serving as an
explanation for the Cerenkov radiation in liquid and
solid materials.

Just as in the dynamics of a resonance problem, the
value of the energy of the luminal particle should be
very high due to the singularity at v = c, but not infinite.
Other conditions are necessary to calculate its limit.
Equation (6) explicitly shows that the kinetic energy
depends directly on the mass of the particle, thus
particles with larger mass will have to have larger
energies to become luminal particles.  We did not find
any support in our derivation for the supposition that
luminal particles have to have zero mass.

5. CONCLUSIONS

Through the use of the beyond-Lorentz transformations
(velocity of light is constant) we derived a new equation
for the invariant momentum-velocity of particles that
can be applied to subluminal or superluminal particles.
Good agreement of this new equation was demonstrated
(for subluminal velocities) with the relativistic
momentum and with Newtonian momentum, in its
respective range of application.  For superluminal
particles this new equation foresees that the momentum
is strongly attenuated with an increase of velocity.   The
kinetic energy calculated using this new equation for the
momentum shows a  maximum at the velocity of light
and decays at subluminal or superluminal velocities.
There is also a good agreement with the relativistic and
Newtonian results for subluminal velocities. However,
there is no need to consider  an energy associated with
the rest-mass of the particle to calculate its kinetic
energy.
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