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Abstract

The vector potential, magnetic field and stored energy of a
quadrupole magnet array are derived. Each magnet within
the array is a current sheet with a current density propor-
tional to the azimuthal angle 2

�
and the longitudinal peri-

odicity
� � � � � 
 �� . Individual quadrupoles within the array

are oriented in a way that maximizes the field gradient.
The array does not have to be of equal spacing and can be
of a finite size, however when the array is equally spaced
and is of infinite size the solution can be simplified. We
note that whereas, in a single quadrupole magnet with a
current density proportional to cos2

�
the gradient is pure,

such purity is not preserved in a quadrupole array.

1 INTRODUCTION

It has been proposed that commercial electricity can be
generated economically from ion beam-driven fusion of
deuterium and tritium in tiny target pellets [1]. A lead-
ing driver candidate is a high energy, high current heavy
ion accelerator. To achieve high currents it is generally
desirable to accelerate multiple beams in parallel through
a low impedance accelerating structure; a long pulse in-
duction linac can be designed to do this. Efficient trans-
port of beam current in the multibeam accelerator would
be accomplished with multiple channel superconducting
quadrupole magnets operating in a DC mode with warm
bore[2].

The vector potential and the magnetic field have been
derived for an array of quadrupole magnets with a thin
cos(2

�
) current sheet at a radius r=R. [3][4]. The field

strength within each coil varies purely as a Fourier sinu-
soidal series of the longitudinal coordinate z in proportion
to 
 mz, where
 � � � � � � � 
 �� , L denotes thehalf-period,
and m is an integer associated with the longitudal har-
monic. The analysis is based on the expansion of the
vector potential in the region external to the windings of
a single quad, and the use of the “Addition Theorem” to
revise the expansion to one around any arbitrary point in
space.
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The quad current density J (A/m) (a form that satisfies the
conservation condition� � �� � � � � �� � � �� � � !� # � $ ), is :
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G2,m is gradient at z=0 and L denotes the half period.

Quadrupoles are combined into an array with a center to
center spacing of 2S and alternating current direction that
maximizes the gradient (Fig. 1 and 2).
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Figure 1: Cross section showing
current density arrangement

Figure 2: View of a 3x3 quadrupole array. The
windings (of constant current) correspond to three terms
m=1,2,3 which provide axial free space between arrays.

Based on such a current distribution the resulting vector-
potential hi

and magnetic field hj
within the bore R of
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each quad, are:
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Where In and Kn are the “modified” Bessel functions
of the first and second kind of order n, and the prime
denotes differentiation with respect to the argument. The
summation i,j is carried over the quads in the first octant
of the array.

The magnetic field components are,
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The format used here for
kl

and
kÁ

was specifically chosen
to avoid a singularity that may rise when L is large (e.g.
when the 3d problem reduces to 2d).

2 ANALYSIS

Consider a quadrupole with its center at� · ³ § ´ � � � � ¹ Å · ³ § ´ � � � � ¹ Å ¡ � as shown in Fig. 3.
The expansion of the vector potential in the region
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Figure 3: The geometry associated
with the Addition Theorem[5].

If we wish to consider an ininite size array where the eight
fold symmetry exists for each and every quad located at
, Ò Ó Ô Õ Ö , we shall add the contributions of quads with
their centers atÒ Ó × Ô Ø Ù Õ Ö Ú Û Ý Ó × Ô Þ Ù ß à Ù Õ Ö á Û Ò Ó × Ô Ø × â Ù Õ Ö Ú
and consider farther summations to be within the first
octant only (quads on the symmetry line will require a
weight factor of 1/2).

Once the vector potential has been derived, the field com-
ponents within the bore R can then be calculated from,ãä å ç è ãê
Finally the arithmatic is check assuring the divergence of
the vector potential and field are zeroç ãê å ë Û ç ãä å ë
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3 STORED ENERGY

The stored energy can be calculated by integrating the
product of current density and vector potentialìí î ìï ð ò ó ô õ

í ö ï ö ÷ í ø ï ø
:

ù õ úû ü ü ü ìí ý î ìï þ ÿ õ úû
� �

ü �
�

ü� � ìí î ìï � þ 	 þ �
(the current density is per unit length and the unit of energy
is

í
).

Applying the orthogonality relations, the stored energy in
a single quad is,

ù 
 � 
 ý � õ � � � � � � �� �� ó �
í �� ø  � ! "� $ & � � ( ) "� $ & � � ( +
$ & � � ( � , ú ÷ - . ��  �$ & � � ( 0 ! "� $ & � � ( 1

where the second term in the square bracket corresponds
to the contributions that arises from all neigboring coils
in the array.

4 SIMULATION OF CURRENT
DENSITY AND FLOW LINES

To generate flow lines we make use of a technique first
demonstrated by J. Laslett and W. Fawley of this lab-
oratory. The character of the flow lines (Figure 4) for
a quadrupole magnet n=2 with a current densityìí õ3� ó � í � ø  � 5 7 8 : ô� < > ? @ û 	 > ? @ & � � BC ö ÷ D F > û 	 D F > & � � BC ø G
will follow by integrating the differential equation,

ô H öH ø õI JI K , so that

> ? @ û 	 õ
3� ó � í � ø  �3� ó � í � ø  � D F > & � � > ? @ û 	 �

where
	 � denotes the value of

	
at z=0.

In a special case, we may choose special values for J02,m

such that,

í � �  � õ í � � úû � L M � � N $ û O � ú ( P$ O ÷ Q � ú ( P $ O � Q ( P
where M corresponds to the number of m terms and J02

is a constant.

With that, the flow lines reduce to the simple expression,

> ? @ û 	 õ úD F > � M � � 7 � ø� < > ? @ û 	 �

and the current density components are,

ìí õ í � � STTTU
TTTV

W BC ò� �
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Figure 4: View of flow lines over a half period
quad (M=1,2,3). These special cases reveal

the reduction in crowding between magnets at
the expense of an increased non-linear field.

5 CONCLUSION

The 3D expressions for the vector potential, field and
energy have been derived. We note that neighboring coils
within the array give rise to harmonic terms (m) which do
not exist in a single quad with cos(2] ) current density. We
also point out that the coefficients associated with^ _` a b
in the vector potential drop out in the expressions for the
field and energy.
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