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CALCULATION OF FINITE-LENGTH, HOLLOW-BEAM EQUILIBRIA

Jinhyung Le& and John R. Cafy
CIPS and Department of Physics, University of Colorado, Boulder, CO

Abstract conductor, the plasma evolves toward thermal equilibria in
which the physical parameter, such as maximum number
nsity, angular velocity, and temperature, are determined
the total number, the total angular momentum, and the

Finite-length equilibria occur in a number of intense-bea
and plasma applications. Penning traps permit the stu

of intra-beam collective effects, as the additional freedo tal enerav. However. for the trap with a center conduc-
gained from having an internal conductor permits great P ray. 0 trap .
r, the bias potential is an additional parameter. This pro-

control over the plasma profile, so that monotonic, but not. s 2 mechanism to control the plasma. To study these
constant, plasma profiles can be obtained. On the basis tmﬂ P : y

the thermal velocity of background neutrals and the dm?y?:]errr;s, I\INe have developed a method to find the solution
velocity of the electrons are much lower than the thermé]uI t;‘h.ca Y- . tigate th ilibria in two diff
velocity of the electrons, and the rotation frequency is small N IS paper, we INVestigate the equiiibra in two drrrer-
compared to the gyrofrequency, the equilibrium equatio nt cases. In the f°”°W.'F19.S?C“°”’ we briefly explain hqw
can be reduced to a self-consistent Poisson equation wh 9eget the thermal equilibria in bOt.h |sothe-rmal a_md adla_—
the source depends on the potential. We solve for the glic cases an_d ShO.W the results n one dimensional adia-
equilibria using a Gauss-Seidel relaxation method. Our r atic process in which the entropy is constant, when the

sults show the shape of the equilibria for various eIectrod%l.asma IS cyllndrlcally symmetric, and it is long compared
configurations. with the radius of the outer shell. In the next section, we

develop a method to calculate two dimensional equilibria.
1 INTRODUCTION

Penning traps with nonneutral plasma under the influence
of a magnetic field have been studied for a variety of exA modified Penning trap with a center conductor that is
periments including plasma physics[1],[2], and CoulomlIglectrically biased allows control of equilibrium by chang-
crystals[3]. Recently, these traps have been used for érg the central potential. As shown in Fig. 1, an outer con-
perimental tests of th€' PT theorem, which predicts that ducting cylinder is divided axially into three sections with
various quantities such as masses, gyromagnetic ratios, gngenter conductor. Compared to the central section, the
charge-to-mass ratios are equal for particles and antiparfivo remaining end sections are at more negative potential
cles. The comparison of charge-to-mass ratios for the at® confine negative charged particles axially. A uniform ax-
tiproton and proton in the trap is much more accurate thafl magnetic field with the electric field between two shells
earlier comparisons made with other techniques[4]. provides radial confinement.
In principle, plasma can be confined perfectly in
an ideal trap with cylindrical symmetry. O’Neil and 4 AV.-AVe  V+ AVe
coworkers[5],[6],[7] derived and solved the equilibrium
equations for a nonneutral plasma without a center conduc- B [ ) ””””””
tor. They assume that the plasma s inthermodynamicequi-  ~—— [ I
librium. A particular thermal equilibrium can be obtained Vv fra [ri
from specific values of total number, total angular momen-
Fum, and to'tal energy. S.im?larly, a qonngutral plasma beam [ PLASMA )
in a solenoid at magnetic field has identical dynamics.
However, in practice, the particles cannot be confined in- .o L L 2L
definitely. Collisions with background neutrals and anoma-
lous transport[8](which is independent of pressure) caugggure 1: The side view of Modified Penning Trap. Here,
the plasma in the trap to expand radially[9]. Since the geg — 350(.
ometry and dynamics are similar to those of a Penning trap,
these kinds of effects can be determined in the nonneutralin order to understand the equilibrium state in the trap,
beam. Thus penning traps permit study of intra-beam colve need to take an appropriate Hamiltonian. The plasma
lective effects. approximation (weak correlation) determines the equilib-
The equilibria of nonneutral plasma can be describegum. The plasma approximation, that the plasma can be
by the self-consistent Poisson equation. Without a centéfeated as a continuous fluid, requires that the number of
~ Email jinhyung@ucsu.colorado.edu particles in a Debyg spherg be largepf, > 1). In.this_
i Email: cary@colorado.edu case the total Hamiltonian is the sum of the Hamiltonians
t Center for Integrated Plasma studies for each particles, with the potential given by Poisson equa-

2 THERMAL EQUILIBRIUM
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tion where the charge density is the fluid density. wherer, andr, is the radii of inner and outer shell[5]. With
With such an approximation, the one particle Hamilto€onservation of total number, angular momentum, and en-
nian is tropy, a particular bias gives other physical quantities, such
1 as maximum number density, angular velocity, charges on
H = %(pi +p?) the shells, and temperature.

1 e - -
to 3 lpe + EAG(T)V’]Q —ep(™) (1) 7t
whereA, () = 2. °l
In a thermodynamic description[7] with conservation of 5}
total number, total angular momentum, and total energy, , |

the distribution(a canonical ensemble) has the form =
sl
" . H — wpy
p(,p) = 27" eapl-———="°] @ -

where Z can be determined from the total number. Inte-
grating both sides over gives the number density OL;

L 1 Lom 9
n(r) = nexp T{e¢(r) - Ewm —w)rt} (3) Figure 2: The density profiles0=5n(r)’s vs r(cm) in
_ o adiabatic process. Here; = 0.32, r = 5.10, N =
wherew is the constant angular velocity in the trap and 5 « 107¢m 1, Lo = —2.35 x 10%¢m, andS = —1.07 x
is maximum number density. 108em-1.

Therefore, the self-consistent Poisson equation

V24(F) = dmen(7) (4)

-

which gives equilibrium states, will be reduced to a dimen-_|
sionless equation

Lo 0w 10 0% _ w5 el

pop’0p oo T o

in terms of new dimensionless variables

mw( — w) e 1+ ,
=——* -1 =—¢p— — ir
7= T onne P VETOT TP
T T z 0
2 — — -160 -140 -120 -100 -80 - 60
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D 47T’7L€27 P /\D7 C /\D ( ) u

Now we will briefly discuss adiabatic variation of equi- Figure 3: The maximum number density)—n (Solid
libria. As we mentioned, each isothermal equilibrium inine) and The temperatured 2T (K) (Dashed line) vs
one dimension can be found by solving the self-consistepptential differencé/(eV').
Poisson equation with conservation of total humber, an-
gular momentum, and total energy when the longitudinal From Fig. 2 and Fig. 3, we can see how the profile can
length of plasma is sufficiently long compared to the radiuge changed as the potential between two shells is changed.
of the outer shell on which the potential is constant. Howthe figures show that smaller potential difference gives
ever, for the trap with a center conductor, a small and sloyiger annular profile. They also show that the tempera-
change of bias potential permits some electrical work bgure decreases as the difference goes down, which means

tween two shells, which means that total energy in the Syghat the trap can be used to cool an electron plasma.
temis no longer a conserved quantity. But a slow change of

the potential guarantees no entropy change in this system.
Therefore, we can get the equilibria by changing the bias 3 FINITE-LENGTH EQUILIBRIUM
potential slowly.

From the definition of entropy, we can easily redefine th
entropy as

gor the case of a finite length column, the number density
and the potential are independen®iadnd those are deter-
mined by three parameterg, AV, andAVy( see Fig. 1

).

ro
_ —3/2
§=—2m /T1 dr rn(r) In[n(r) T/ ™ In this case, the dimensionless Poisson equation can be
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reduced to

4 CONCLUSION

Modified Penning traps allows us to confine and cool elec-
tron plasma both radially and axially with two potential

differences. By changing the radial potential difference
where the potential dependency of source term in the righglowly, all physical parameters including temperature can

hand side makes it more difficult to solve the equation. be controlled. In the adiabatic process, the plasma is wider

We solve this equation numerically by using a nonlineaand colder as the potential difference is smaller.
variant of the Gauss-Seidel iteration procedure for elliptical

equations. The value); ;, at a grid point depends on the

10 oy P,
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With the convergence conditiohpl(fj?“) - 1/%(3” < ¢ for

sufficiently smalls (= 10~%), the equilibrium is obtained.
Since the length is sufficiently large compared to radius

of outer shell, we may suppose that the cross sectien(

constant) near the center should coincide with the one di-

mensional solution that is independentadndz, and that

the profile varies little with: in the central region far from

the end sections of outer shell. Our numerical solution does

bear this out. Fig. 4 shows the two dimensional density dis-
tribution.
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Figure 4: The 2D density profile(r, z)/n near thez =
—L in isothermal process. Herd, = 200\p, 1 =
40Ap, r2 = 80Ap, v = 1.0 x 1075, V = 3.70V,
AV = 1230V, AV = 1230V, T = 118.33 K, and
Ap = 5.0 x 1072 em.
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