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Abstract

Finite-length equilibria occur in a number of intense-beam
and plasma applications. Penning traps permit the study
of intra-beam collective effects, as the additional freedom
gained from having an internal conductor permits greater
control over the plasma profile, so that monotonic, but not
constant, plasma profiles can be obtained. On the basis that
the thermal velocity of background neutrals and the drift
velocity of the electrons are much lower than the thermal
velocity of the electrons, and the rotation frequency is small
compared to the gyrofrequency, the equilibrium equation
can be reduced to a self-consistent Poisson equation where
the source depends on the potential. We solve for these
equilibria using a Gauss-Seidel relaxation method. Our re-
sults show the shape of the equilibria for various electrode
configurations.

1 INTRODUCTION

Penning traps with nonneutral plasma under the influence
of a magnetic field have been studied for a variety of ex-
periments including plasma physics[1],[2], and Coulomb
crystals[3]. Recently, these traps have been used for ex-
perimental tests of theCPT theorem, which predicts that
various quantities such as masses, gyromagnetic ratios, and
charge-to-mass ratios are equal for particles and antiparti-
cles. The comparison of charge-to-mass ratios for the an-
tiproton and proton in the trap is much more accurate than
earlier comparisons made with other techniques[4].

In principle, plasma can be confined perfectly in
an ideal trap with cylindrical symmetry. O’Neil and
coworkers[5],[6],[7] derived and solved the equilibrium
equations for a nonneutral plasma without a center conduc-
tor. They assume that the plasma is in thermodynamic equi-
librium. A particular thermal equilibrium can be obtained
from specific values of total number, total angular momen-
tum, and total energy. Similarly, a nonneutral plasma beam
in a solenoid at magnetic field has identical dynamics.

However, in practice, the particles cannot be confined in-
definitely. Collisions with background neutrals and anoma-
lous transport[8](which is independent of pressure) cause
the plasma in the trap to expand radially[9]. Since the ge-
ometry and dynamics are similar to those of a Penning trap,
these kinds of effects can be determined in the nonneutral
beam. Thus penning traps permit study of intra-beam col-
lective effects.

The equilibria of nonneutral plasma can be described
by the self-consistent Poisson equation. Without a center
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conductor, the plasma evolves toward thermal equilibria in
which the physical parameter, such as maximum number
density, angular velocity, and temperature, are determined
by the total number, the total angular momentum, and the
total energy. However, for the trap with a center conduc-
tor, the bias potential is an additional parameter. This pro-
vides a mechanism to control the plasma. To study these
systems, we have developed a method to find the solution
numerically.

In this paper, we investigate the equilibria in two differ-
ent cases. In the following section, we briefly explain how
to get the thermal equilibria in both isothermal and adia-
batic cases and show the results in one dimensional adia-
batic process in which the entropy is constant, when the
plasma is cylindrically symmetric, and it is long compared
with the radius of the outer shell. In the next section, we
develop a method to calculate two dimensional equilibria.

2 THERMAL EQUILIBRIUM

A modified Penning trap with a center conductor that is
electrically biased allows control of equilibrium by chang-
ing the central potential. As shown in Fig. 1, an outer con-
ducting cylinder is divided axially into three sections with
a center conductor. Compared to the central section, the
two remaining end sections are at more negative potential
to confine negative charged particles axially. A uniform ax-
ial magnetic field with the electric field between two shells
provides radial confinement.

r ir1

ro r2

∆VCV+∆VC ∆V0V+ -

2LL-2L -L

V
z

r

B

PLASMA

Figure 1: The side view of Modified Penning Trap. Here,
B = 350G.

In order to understand the equilibrium state in the trap,
we need to take an appropriate Hamiltonian. The plasma
approximation (weak correlation) determines the equilib-
rium. The plasma approximation, that the plasma can be
treated as a continuous fluid, requires that the number of
particles in a Debye sphere be large, (n̄λ3

D � 1). In this
case the total Hamiltonian is the sum of the Hamiltonians
for each particles, with the potential given by Poisson equa-
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tion where the charge density is the fluid density.
With such an approximation, the one particle Hamilto-

nian is

H =
1

2m
(p2
r + p2

z)

+
1

2mr2
[pθ +

e

c
Aθ(~r)r]2 − eφ(~r) (1)

whereAθ(~r) = Br
2 .

In a thermodynamic description[7] with conservation of
total number, total angular momentum, and total energy,
the distribution(a canonical ensemble) has the form

ρ(~r, ~p) = Z−1 exp[−H − ωpθ
T

] (2)

whereZ can be determined from the total number. Inte-
grating both sides over~p gives the number density

n(~r) = n̄ exp

[
1
T
{eφ(~r) − m

2
ω(Ω − ω)r2}

]
(3)

whereω is the constant angular velocity in the trap andn̄
is maximum number density.

Therefore, the self-consistent Poisson equation

∇2φ(~r) = 4πen(~r) (4)

which gives equilibrium states, will be reduced to a dimen-
sionless equation

1
ρ

∂

∂ρ
ρ
∂ψ

∂ρ
+

1
ρ2

∂2ψ

∂θ2
+

∂2ψ

∂ζ2
= eψ − (1 + γ) (5)

in terms of new dimensionless variables

γ ≡ mω(Ω − ω)
2πn̄e2

− 1, ψ ≡ e

T
φ − 1 + γ

4
ρ2,

λ2
D ≡ T

4πn̄e2
, ρ ≡ r

λD
, ζ ≡ z

λD
. (6)

Now we will briefly discuss adiabatic variation of equi-
libria. As we mentioned, each isothermal equilibrium in
one dimension can be found by solving the self-consistent
Poisson equation with conservation of total number, an-
gular momentum, and total energy when the longitudinal
length of plasma is sufficiently long compared to the radius
of the outer shell on which the potential is constant. How-
ever, for the trap with a center conductor, a small and slow
change of bias potential permits some electrical work be-
tween two shells, which means that total energy in the sys-
tem is no longer a conserved quantity. But a slow change of
the potential guarantees no entropy change in this system.
Therefore, we can get the equilibria by changing the bias
potential slowly.

From the definition of entropy, we can easily redefine the
entropy as

S = −2π

∫ r2

r1

dr r n(r) ln[n(r)T−3/2] (7)

wherer1 andr2 is the radii of inner and outer shell[5]. With
conservation of total number, angular momentum, and en-
tropy, a particular bias gives other physical quantities, such
as maximum number density, angular velocity, charges on
the shells, and temperature.
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Figure 2: The density profiles10−6n(r) ’s vs r(cm) in
adiabatic process. Here,r1 = 0.32, r2 = 5.10, N =
5 × 107cm−1, Pθ

mΩ = −2.35 × 108cm, andS = −1.07 ×
108cm−1.
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Figure 3: The maximum number density10−6n (Solid
line) and The temperature10−2T (K) (Dashed line) vs
potential differenceU(eV ).

From Fig. 2 and Fig. 3, we can see how the profile can
be changed as the potential between two shells is changed.
The figures show that smaller potential difference gives
wider annular profile. They also show that the tempera-
ture decreases as the difference goes down, which means
that the trap can be used to cool an electron plasma.

3 FINITE-LENGTH EQUILIBRIUM

For the case of a finite length column, the number density
and the potential are independent ofθ and those are deter-
mined by three parameters,γ, ∆VC , and∆V0( see Fig. 1
).

In this case, the dimensionless Poisson equation can be
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reduced to

1
ρ

∂

∂ρ
ρ
∂ψ

∂ρ
+

∂2ψ

∂ζ2
= eψ − (1 + γ) (8)

where the potential dependency of source term in the right-
hand side makes it more difficult to solve the equation.

We solve this equation numerically by using a nonlinear
variant of the Gauss-Seidel iteration procedure for elliptical
equations. The value,ψi,j , at a grid point depends on the
values of the nearest grid points,ψi+1,j , ψi−1,j , ψi,j+1,
ψi,j−1, andψi,j itself because the source term depends on
ψ. Therefore, the relation can be of a form

ψi,j = f(ψi,j , ψi+1,j , ψi−1,j , ψi,j+1, ψi,j−1). (9)

Finally the equation can be reduced to

ψ
(n+1)
i,j =

1

2(1 + ∆ρ2

∆ζ2 )
[−∆ρ2(eψ

(n)
i,j − 1 − γ)

+ (1 +
∆ρ

2ρi
)ψ(n)
i+1,j + (1 − ∆ρ

2ρi
)ψ(n)
i−1,j

+
∆ρ2

∆ζ2
(ψ(n)
i,j+1 + ψ

(n)
i,j−1)]. (10)

With the convergence condition,|ψ(n+1)
i,j − ψ

(n)
i,j | < δ for

sufficiently smallδ (= 10−4 ), the equilibrium is obtained.
Since the length is sufficiently large compared to radius

of outer shell, we may suppose that the cross section(z =
constant) near the center should coincide with the one di-
mensional solution that is independent ofθ andz, and that
the profile varies little withz in the central region far from
the end sections of outer shell. Our numerical solution does
bear this out. Fig. 4 shows the two dimensional density dis-
tribution.

Figure 4: The 2D density profilen(r, z)/n̄ near thez =
−L in isothermal process. Here,L = 200λD, r1 =
40λD, r2 = 80λD, γ = 1.0 × 10−5, V = 3.70 V ,
∆VC = 12.30 V , ∆V0 = 12.30 V , T = 118.33 K, and
λD = 5.0× 10−2 cm.

4 CONCLUSION

Modified Penning traps allows us to confine and cool elec-
tron plasma both radially and axially with two potential
differences. By changing the radial potential difference
slowly, all physical parameters including temperature can
be controlled. In the adiabatic process, the plasma is wider
and colder as the potential difference is smaller.
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