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Abstract charge density multiplied by the basis functions are inte-

A new finite element gun code is under development. “qrated along the ray trajectories,

an effort to improve the gun code model, a concept[1] Ny 7

has been proposed recently that treats fields in a typical p; = / pN; dQ) = Z/ L N;(x;(s))ds.  (3)

way, but includes a unique, formal approach to both parti- Q j=1 7R v;(s)

cle tracking and source allocation. Being a new approach,

there are concerns about the speed, accuracy, and approFhere are numerous questions concerning the speed, ac-
priateness of this proposal for the electrostatic, steady-stateracy and utility of the proposed concepts. In this paper
particle-in-cell (PIC) gun model. In order to resolve somave compare and contrast three charge deposition schemes
of these issues, a variety of particle tracking and chargad three electric field interpolation schemes in the context
deposition schemes are being evaluated with respect to af-a simple 1D problem which can be solved analytically.
curacy, speed, robustness, and effect on the model. THike basis function$v; for ¢ are linear. The charge depo-
includes various methods for computing the electric fieldition schemes studied are constant (where the charge in
at the particle locations. For this study, we are using than element is shared equally among the element’s nodes),
SAIC 3D gun code AVGUN as a testbed to incorporate andearest grid point (NGP) and linear (i.e., Eq. 3). The field
evaluate these methods. Results of a theoretical analysismterpolation schemes are constant (i.e., Eq. 2) and two
the methods will be presented, and a comparison will bierms of linear interpolation discussed below.

made with the empirical results.

2 THE TEST CASE

1 INTRODUCTION

o We studied a simple 1D diode problem which can be solved

Some concepts for a new finite element (FE) gun code weggaytically. The parameters of the problem are listed in
proposed recently[1]. This new FE gun code will modeiraple 1. A finite particle energy at the cathode was chosen
complicated 3D problems. The proposed concepts focusgg that the singularity at a space charge limited (SCL) cath-
on dealing effectively with issues a gun code will encounte§ge is avoided. Similarly, the current transported across

on an unstructured grid. the diode was fixed. Differences in SCL emission algo-

For example, rays are traced through the unstructur@fhms in various codes do not affect this study. The lim-

grid element by element using local coordinates in eaGhng case of perfect integration of the equations of motion
element. Such a particle-tracking scheme has numerggsthe presence of the discretized fields was pursued, so is-
qualities which we will not enumerate here. Concerninges arising from finite integration steps are mitigated. The
the finite element field calculation, the potential is a lineayo|tages were chosen so that the problem is essentially non-

combination of basis functiony;(x), relativistic. The meshes are uniform.
P(x) = aiNi(x). 1) Table 1: 1D Diode Test Case Parameters
= anode-cathode gag, 0.05m
The electric field is the derivative of this potential with no | anode-cathode voltagéy — ¢o | 4.5kV
additional smoothing, electron energy at cathodg, 10eV
current density,/ -250 Alcn?
_ R cathode electric fieldz(0) -34.9187kV/m
B(x) =-Vo(x) = - Z; @ VN (x). (2) anode electric fieldE(d) -115.782kV/m
= transit time,r 2.86391ns

The charge deposition scheme follows from the formal
application of the finite element formulation: the linear
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all conserve energy precisely at the anode. That is, the par-

8 T T T T ‘ T T T T ‘ T T T T ‘ T T T T ‘ T T T T
ticle energy will be exactly the anode voltage, regardless & g

Solver/field interpolation:

of the discretization of the anode-cathode gap. The tran- =g/ Eg;ﬁggztram ]
sit time is not exact in any of the schemes studied here, SO | — FEfconstant 1
transit time error will be our main measure of the quality of © | Charge deposition: 7
the beam calculation. The analytic results in Table 1 were S 4~ <linear 7
computed with a non-relativistic model. © | Vvconstant ]

The quality of the field calculation can be measured by £ oL i
the error of the computed potential at the nodes. Alterna- % - .
tively, the transit time error can be considered an integral = [ 5 i

H 5 H H [EI v [ [ [T L 1
measure of the error in the field calculation. The transit % 0.005 001 0015 002 0.025
time is h/d=1/n
d dx d -m A A A o~
= / ar :/ /7da:, (4) Figure 1: Relative error of the electric field(0) at the
o v(z) 0 2q¢e () cathode, computed by linear extrapolation of the electric

. L ) field in the first two cells, versus cell size
where—q¢. () is the kinetic energy of the particle. The

potential ¢. derives from the integration of the electric 1
field, - Field interpolation:
1072F ----linear

pe () = do —/0 E(a') dx’. ®) - —constant

In the analytic case there is no distinction betwggandg E
(we take the arbitrary constant difference to be zero), but
in the discretized problem the field interpolation algorithme
may introduce a distinction. The transit time error is

o 3
-
e

Charge deposition:
onearest grid point |

—4 ~
. 10 o linear
o / \/ —m \/ —m I () r v constant i
h - = - L L L L N L L L L Lo 4
o V 2q¢.(x) 2q¢ () 0.003 0.01 0.03 0.1

IR

R hjd=1/n
| Vs @) — s da. @) _ | -,
o V 8q¢*(x) Figure 2: Relative error of the transit timg versus cell

sizeh, using various field interpolation and charge deposi-
3 TESTS WITH AVGUN tion schemes.

AVGUN is a 3D gun code which employs a Cartesian
mesh. For this study, the code was modified to allow botheposition scheme. Furthermore, the choice of field inter-
linear and constant charge deposition schemes, and belation scheme shows no significant effect.
linear and constant field interpolation schemes. In AV- Transit time in the AVGUN simulations was also scruti-
GUN, the linear field interpolation is performed on a duahized, but the results were difficult to interpret due to addi-
grid, as is typical for finite difference (FD) codes. The electional random errors, perhaps residual errors left by the iter-
tric field on the half dual cells at the ends of the grid is conative solvers, which were about the same size as the transit
stant. An FE field solution option was added to AVGUN'stime errors of interest.
existing FD field solver.

The details of the matrix equation representing Poisson’s 4 TESTS WITH A 1D CODE
equation in 3D are different between the FD and FE algo-
rithms, but for a 1D problem the matrices are equivalenturther tests were performed with small 1D codes that in-
The 1D test problem was modeled with AVGUN using bothegrated the equations of motion cell by cell, either ana-
algorithms, and the FE case agrees with the FD case. lytically or with a high order adaptive integrator. Further-

The quality of the AVGUN calculations was measurednore, the matrix equations were solved directly instead of
by the error in the electric field at the cathode. This electriteratively, and the relaxation procedure was performed to
field was computed by linearly extrapolating the electrithe limit dictated by numerical precision. The results are
fields in the first two cells £(h/2) and E(3h/2)) to the shown in Figs. 2-4. Linear field interpolation in this case
cathode. The integration step sizg, was varied, and the means an average electric field is computed at each node,
results were linearly extrapolated to infinitesimal step sizeand then these average electric fields are interpolated lin-
The dependence of the relative error on integration step siearly within each cell. There is no dual grid.
was approximately600%)h.ay /d. The results are shown The transit time errors shown in Fig. 2 would indicate
in Fig. 1. From this test, it appears that the constant chargace again that the constant charge deposition scheme was
deposition scheme performs better than the linear chargaperior. These two results were surprising to the authors,

2779



Proceedings of the 1999 Particle Accelerator Conference, New Y ork, 1999

101 . Fi‘eld‘ interpolation: deposits less charge in the gap, so the potential is increased,

F ) adding to the interpolation error and thus the transit time
----linear error
—— constant o & h T . .
10° ¢ E This situation does not depend on the particular param-
E - 1 eters of the 1D test problem. Choosing a case with a
smoother charge distribution (e.g., by injecting the beam
.. 3 atahigher energy) reduces the magnitude of the error, but
Charge deposition: 1 . S
- constant 1 the constant charge deposition scheme will still give a bet-
onearest grid point | ter transit time than the linear charge deposition scheme.
2 o linear E Fig. 4 suggests that an electric field calculation scheme
0003 001 —003 o1 Which better interpolates the potential at the nodes would
h/d=1/n significantly reduce the transit time error. The linear field
_ _ _ interpolation schemes studied here are defective in the
Figure 3: Maximum error of the nodal potentigls ; ver-  sense that). from Eq. 5 does not agree with the poten-
sus cell size. tial ¢y ; at the nodes. The potentiajs for these cases
are systematically higher than the corresponding constant

max |¢p,; — ¢(zi)| (V)

10;’;‘@-‘ 4 field interpolation cases, as shown in Fig. 4. This differ-
8L 4 4 ence is mainly due to the field interpolation—the change
Ssi o, ©o.g 4 in the nodal potentials is relatively modest in comparison.
= 1 This difference inp, increases the transit time error.
\54 E Some existing FE gun codes (e.g., DEMEOS[4] and
| 2| 4 TRAK][5]) fit the potential at nearby nodes to a quadratic
=ob - y function, and then base the electric field on derivatives of
St 1 this fit potential. A similar scheme which ensures agree-
2F 71 ment of the fit potential at the cell's nodes could make
AT vy Yy vyl L - the linear charge deposition scheme unambiguously supe-
0 0.2 0.4 0.6 0.8 1 rior. Likewise, a higher order (e.g., quadratic) basis for the
z/d potential would significantly reduce the interpolation error

and at the same time significantly reduce the error at the

Figure 4: Potential errap. (z) — ¢(z) for h/d = 1/20 and des.

0
various field interpolation and charge deposition schemes.
Symbols identify the potential error at nodes. See Fig. 3

for legend. 5 CONCLUSION

A study of three charge deposition schemes and three field
so further explanation was pursued. In contrast, lookin ir%terpolation schemes in the context of a simple 1D prob-

 €Xp ) b ' - 9 8m indicates that the constant charge deposition, constant
the error in the potential at the nodes, shown in Fig. 3, o

would conclude that the linear charge deposition, const;}rlue Id interpolation scheme provides for the best simulation

S . . . of the beam. However, the results also suggest that the path
field interpolation scheme is superior. . . ) !
. L . to further improvement of a linear basis FE gun code in-
Detailed examination of the potential reveals the source : o . . .
. . . . Volves linear charge deposition combined with a better field
of this apparent discrepancy. While the potential at the :
. ! . o hterpolation scheme.
nodes is very good in the linear charge deposition, con-
stant field interpolation scheme, the error in the potential
is dominated by the limited ability of the linear basis func- 6 REFERENCES
tions to interpolate the exact potential. The large bumgs] Eric M. Nelson and John J. Petillo, “Conceptual Description
in Fig. 4 illustrate this. Error analysis of the finite element  of a Novel Finite Element Gun Code,” ICAP'98.
m.et.ho.d[Z, 3]_ also SUQQ?SFS th|s—the electric f|eld errqr 'f?] Claes Johnson, “Numerical Solution of Partial Differential
minimized directly. Minimization of the potential erroris * * gquations by the Finite Element Method,” Cambridge Univ.
secondary. Referring to Eq. 7, one can see that the transit press, 1987.
tlm,? error arises mainly from the first few “interpolation er._\;3] Strang and Fix, “An Analysis of the Finite Element Method,”
ror” bumps, where the particles are slowest and the relative’ p o o Hall 1973.
velocity error is largest. R T A G | p Relativistic B D .
The dependence of the transit time error on the chardd R- True, "A General Purpose Relativistic Beam Dynamics
- Code,” CAP’93.
deposition schemes can now be understood. The constant _ o
the components; of the source vector are larger), so the ~ Design,” ICOPS'96.
potential is depressed, and the transit time error due to in-

terpolation error is partially cancelled. The NGP scheme

2780



