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Abstract

A new finite element gun code is under development. In
an effort to improve the gun code model, a concept[1]
has been proposed recently that treats fields in a typical
way, but includes a unique, formal approach to both parti-
cle tracking and source allocation. Being a new approach,
there are concerns about the speed, accuracy, and appro-
priateness of this proposal for the electrostatic, steady-state
particle-in-cell (PIC) gun model. In order to resolve some
of these issues, a variety of particle tracking and charge
deposition schemes are being evaluated with respect to ac-
curacy, speed, robustness, and effect on the model. This
includes various methods for computing the electric field
at the particle locations. For this study, we are using the
SAIC 3D gun code AVGUN as a testbed to incorporate and
evaluate these methods. Results of a theoretical analysis of
the methods will be presented, and a comparison will be
made with the empirical results.

1 INTRODUCTION

Some concepts for a new finite element (FE) gun code were
proposed recently[1]. This new FE gun code will model
complicated 3D problems. The proposed concepts focused
on dealing effectively with issues a gun code will encounter
on an unstructured grid.

For example, rays are traced through the unstructured
grid element by element using local coordinates in each
element. Such a particle-tracking scheme has numerous
qualities which we will not enumerate here. Concerning
the finite element field calculation, the potential is a linear
combination of basis functionsNi(x),

�(x) =

nX
i=1

�iNi(x): (1)

The electric field is the derivative of this potential with no
additional smoothing,

E(x) = �r�(x) = �

nX
i=1

�irNi(x): (2)

The charge deposition scheme follows from the formal
application of the finite element formulation: the linear
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charge density multiplied by the basis functions are inte-
grated along the ray trajectories,

bi =

Z



�Ni d
 =

nrX
j=1

Z
Rj

Ij

vj(s)
Ni(xj(s)) ds: (3)

There are numerous questions concerning the speed, ac-
curacy and utility of the proposed concepts. In this paper
we compare and contrast three charge deposition schemes
and three electric field interpolation schemes in the context
of a simple 1D problem which can be solved analytically.
The basis functionsNi for � are linear. The charge depo-
sition schemes studied are constant (where the charge in
an element is shared equally among the element’s nodes),
nearest grid point (NGP) and linear (i.e., Eq. 3). The field
interpolation schemes are constant (i.e., Eq. 2) and two
forms of linear interpolation discussed below.

2 THE TEST CASE

We studied a simple 1D diode problem which can be solved
analytically. The parameters of the problem are listed in
Table 1. A finite particle energy at the cathode was chosen
so that the singularity at a space charge limited (SCL) cath-
ode is avoided. Similarly, the current transported across
the diode was fixed. Differences in SCL emission algo-
rithms in various codes do not affect this study. The lim-
iting case of perfect integration of the equations of motion
in the presence of the discretized fields was pursued, so is-
sues arising from finite integration steps are mitigated. The
voltages were chosen so that the problem is essentially non-
relativistic. The meshes are uniform.

Table 1: 1D Diode Test Case Parameters

anode-cathode gap,d 0.05 m
anode-cathode voltage,�d � �0 4.5 kV
electron energy at cathode,�0 10 eV
current density,J -250 A/cm2

cathode electric field,E(0) -34.9187kV/m
anode electric field,E(d) -115.782kV/m
transit time,� 2.86391ns

For this 1D problem there are only two measures of the
quality of the beam calculation: transit time and particle
energy. The computational schemes presented in this paper
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all conserve energy precisely at the anode. That is, the par-
ticle energy will be exactly the anode voltage, regardless
of the discretization of the anode-cathode gap. The tran-
sit time is not exact in any of the schemes studied here, so
transit time error will be our main measure of the quality of
the beam calculation. The analytic results in Table 1 were
computed with a non-relativistic model.

The quality of the field calculation can be measured by
the error of the computed potential at the nodes. Alterna-
tively, the transit time error can be considered an integral
measure of the error in the field calculation. The transit
time is

� =

Z
d

0

dx

v(x)
=

Z
d

0

r
�m

2q�e(x)
dx; (4)

where�q�e(x) is the kinetic energy of the particle. The
potential�e derives from the integration of the electric
field,

�e(x) = �0 �

Z x

0

E(x0) dx0: (5)

In the analytic case there is no distinction between�e and�
(we take the arbitrary constant difference to be zero), but
in the discretized problem the field interpolation algorithm
may introduce a distinction. The transit time error is

�h � � =

Z
d

0

r
�m

2q�e(x)
�

r
�m

2q�(x)
dx (6)

�=

Z d

0

r
�m

8q�3(x)
(�e(x) � �(x)) dx: (7)

3 TESTS WITH AVGUN

AVGUN is a 3D gun code which employs a Cartesian
mesh. For this study, the code was modified to allow both
linear and constant charge deposition schemes, and both
linear and constant field interpolation schemes. In AV-
GUN, the linear field interpolation is performed on a dual
grid, as is typical for finite difference (FD) codes. The elec-
tric field on the half dual cells at the ends of the grid is con-
stant. An FE field solution option was added to AVGUN’s
existing FD field solver.

The details of the matrix equation representing Poisson’s
equation in 3D are different between the FD and FE algo-
rithms, but for a 1D problem the matrices are equivalent.
The 1D test problem was modeled with AVGUN using both
algorithms, and the FE case agrees with the FD case.

The quality of the AVGUN calculations was measured
by the error in the electric field at the cathode. This electric
field was computed by linearly extrapolating the electric
fields in the first two cells (E(h=2) andE(3h=2)) to the
cathode. The integration step sizehray was varied, and the
results were linearly extrapolated to infinitesimal step size.
The dependence of the relative error on integration step size
was approximately(600%)hray=d. The results are shown
in Fig. 1. From this test, it appears that the constant charge
deposition scheme performs better than the linear charge
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Figure 1: Relative error of the electric field~E(0) at the
cathode, computed by linear extrapolation of the electric
field in the first two cells, versus cell sizeh.
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Figure 2: Relative error of the transit time�h versus cell
sizeh, using various field interpolation and charge deposi-
tion schemes.

deposition scheme. Furthermore, the choice of field inter-
polation scheme shows no significant effect.

Transit time in the AVGUN simulations was also scruti-
nized, but the results were difficult to interpret due to addi-
tional random errors, perhaps residual errors left by the iter-
ative solvers, which were about the same size as the transit
time errors of interest.

4 TESTS WITH A 1D CODE

Further tests were performed with small 1D codes that in-
tegrated the equations of motion cell by cell, either ana-
lytically or with a high order adaptive integrator. Further-
more, the matrix equations were solved directly instead of
iteratively, and the relaxation procedure was performed to
the limit dictated by numerical precision. The results are
shown in Figs. 2-4. Linear field interpolation in this case
means an average electric field is computed at each node,
and then these average electric fields are interpolated lin-
early within each cell. There is no dual grid.

The transit time errors shown in Fig. 2 would indicate
once again that the constant charge deposition scheme was
superior. These two results were surprising to the authors,
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Figure 3: Maximum error of the nodal potentials�h;i ver-
sus cell sizeh.
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Figure 4: Potential error�e(x)��(x) for h=d = 1=20 and
various field interpolation and charge deposition schemes.
Symbols identify the potential error at nodes. See Fig. 3
for legend.

so further explanation was pursued. In contrast, looking at
the error in the potential at the nodes, shown in Fig. 3, one
would conclude that the linear charge deposition, constant
field interpolation scheme is superior.

Detailed examination of the potential reveals the source
of this apparent discrepancy. While the potential at the
nodes is very good in the linear charge deposition, con-
stant field interpolation scheme, the error in the potential
is dominated by the limited ability of the linear basis func-
tions to interpolate the exact potential. The large bumps
in Fig. 4 illustrate this. Error analysis of the finite element
method[2, 3] also suggests this—the electric field error is
minimized directly. Minimization of the potential error is
secondary. Referring to Eq. 7, one can see that the transit
time error arises mainly from the first few “interpolation er-
ror” bumps, where the particles are slowest and the relative
velocity error is largest.

The dependence of the transit time error on the charge
deposition schemes can now be understood. The constant
scheme deposits more charge in the gap (in the sense that
the componentsbi of the source vector are larger), so the
potential is depressed, and the transit time error due to in-
terpolation error is partially cancelled. The NGP scheme

deposits less charge in the gap, so the potential is increased,
adding to the interpolation error and thus the transit time
error.

This situation does not depend on the particular param-
eters of the 1D test problem. Choosing a case with a
smoother charge distribution (e.g., by injecting the beam
at a higher energy) reduces the magnitude of the error, but
the constant charge deposition scheme will still give a bet-
ter transit time than the linear charge deposition scheme.

Fig. 4 suggests that an electric field calculation scheme
which better interpolates the potential at the nodes would
significantly reduce the transit time error. The linear field
interpolation schemes studied here are defective in the
sense that�e from Eq. 5 does not agree with the poten-
tial �h;i at the nodes. The potentials�e for these cases
are systematically higher than the corresponding constant
field interpolation cases, as shown in Fig. 4. This differ-
ence is mainly due to the field interpolation—the change
in the nodal potentials is relatively modest in comparison.
This difference in�e increases the transit time error.

Some existing FE gun codes (e.g., DEMEOS[4] and
TRAK[5]) fit the potential at nearby nodes to a quadratic
function, and then base the electric field on derivatives of
this fit potential. A similar scheme which ensures agree-
ment of the fit potential at the cell’s nodes could make
the linear charge deposition scheme unambiguously supe-
rior. Likewise, a higher order (e.g., quadratic) basis for the
potential would significantly reduce the interpolation error
and at the same time significantly reduce the error at the
nodes.

5 CONCLUSION

A study of three charge deposition schemes and three field
interpolation schemes in the context of a simple 1D prob-
lem indicates that the constant charge deposition, constant
field interpolation scheme provides for the best simulation
of the beam. However, the results also suggest that the path
to further improvement of a linear basis FE gun code in-
volves linear charge deposition combined with a better field
interpolation scheme.

6 REFERENCES

[1] Eric M. Nelson and John J. Petillo, “Conceptual Description
of a Novel Finite Element Gun Code,” ICAP’98.

[2] Claes Johnson, “Numerical Solution of Partial Differential
Equations by the Finite Element Method,” Cambridge Univ.
Press, 1987.

[3] Strang and Fix, “An Analysis of the Finite Element Method,”
Prentice-Hall, 1973.

[4] R. True, “A General Purpose Relativistic Beam Dynamics
Code,” CAP’93.

[5] S. Humphries Jr., “Finite-element Methods for Electron Gun
Design,” ICOPS’96.

2780

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999


