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Abstract

The code CLANS?2 is an improved version of SuperLANS
code [1] for calculation of axisymmetric cavities. This
code permits the evaluation of multipole modes in cavities
with partially loss dielectric and ferrite fillings. The code
solves a complex eigenmode problem. A self-consistent
problem is solved for frequency-dependent dielectric
permittivity and magnetic permeability.

1 INTRODUCTION

The cavities with high loss ferrite filling are used in many
areas. Ferrite insertions are used, for example, in
superconducting accelerating cavities for HOM damping
[2] and in high power RF amplifiers for self-excitation
damping (see, for example, [3]). Most RF cavities have
rotational symmetry, with a small amount of weak
distortion produced by coupling elements. So 2D codes
continue to play an important role in practical
calculations. A calculation of the monopole modes in the
presence of high loss materials can be produced using
codes, such as CFISH [4] and CLANS [5]. In the present
paper we describe a new code, CLANS2, for multipole
mode calculations in axisymmetric systems.  The
multipole mode calculation is necessary, for example, for
analysis and optimisation of transverse impedance of
accelerating cavities with ferrite HOM dampers in cyclic
accelerators [2]. It may also be useful for design and
optimisation of RF sources, where operating modes have
azimuthal variations, i.e., gyrotrons, gyroklystron, etc.

2 SOLUTION METHOD

CLANS?2 is based on the same method as SLANS2 [5].
Unlike the scalar problem for monopole modes, the
problem of multipole mode calculation is a vector
problem. For example, the magnetic field is described by
wave equation:
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where € and 1 are complex permittivity and permeability.
Eliminating azimuthal field component, we obtain a
system of the two equations for H; and H,, which has no
spurious solutions [6,7]. The boundary conditions for
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magnetic field on a metallic surface have the following
form [8]:
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where K - is the curvature of surface in (r, z) plane.
Solving the eigenvector problem for radial and axial
components of magnetic field, we can reconstruct the
azimuthal component of magnetic field and all
components of electric field using Maxwell equations.
Notice that it is also possible to solve the eigenmode
problem for the same components of electric field. In this
case the field equations have the same form, except that
the boundary conditions on a metallic surface are [8]:
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where 7; is radial component of unit vector normal to
surface in (7, z) plane. The two-component field equation
is solved using the finite element method. We use a scalar
eight-node rectangular isoparametric elements. These
curvilinear  elements  provide a  second-order
approximation, and permit the describing of the geometry
with high accuracy. The algebraic system of equations for
the mesh node field values is obtained using Galerkin's
method. The matrix system in our case is complex and
asymmetric. To satisfy the boundary condition on a
metallic surface we use the method described in [8]. We
rewrite the equations for the mesh nodes on metallic
surfaces for the normal and tangential field components;
H,, H;or E, E; and combine these equations to satisfy
(2 or 2"). On ferrite or dielectric surfaces the problem of
satisfying the boundary conditions is more complicated.
In (r, z) plane only the tangential field components A and
E;are continuous. So we rewrite the equations for B, H,
or Dy, E,(instead of H,, H,or E,, E;) for the mesh nodes
on ferrite or dielectric boundary to satisfy the boundary
conditions [5]. This method allows the use of a regular
finite element mesh. To find several modes
simultaneously in an arbitrary spectrum domain, we use
subspace iteration method with frequency shift for an
asymmetric algebraic problem [9]. If the permittivity and
permeability of the lossy filling depend on frequency, the
self-consistent problem is solved. The iterations are
produced in the following way. The solution for fixed
permittivity and permeability is used as an initial
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approximation. Then for this frequency the new values of
permeability and permittivity are chosen. Using these
values of permittivity and permeability, we find the new
frequency by the method of inverse iteration with
frequency shift, which provides the effective separation of
required mode, and so on utill convergence. We use the
frequency of the previous iteration as a new frequency
shift. As arule, several iterations are enough to obtain the
self-consistent  solution. Iterations are produced
automatically if a file with permittivity and permeability
frequency dependencies is prepared.

3 TESTS AND EXAMPLES OF
CALCULATIONS

A spherical cavity with concentric spherical dielectric or
ferrite insertion with high losses (tgd = 1) was used as a
test. For a mesh containing only 100 elements the
difference between analytical calculations and CLANS2
results is less than 0.3% for the frequencies of the first 10
dipole modes. The code CLANS?2 is currently used for
multipole spectrum simulations in CESR superconducting
cavity having ferrite HOM dampers [10]. The finite
element mesh, which is used for dipole mode calculations,
is shown in the Fig.1. The lines, where r-E = const, are
shown for two modes in the Figs. 2-4. Second mode is a
“ghost” mode, which is located near the ferrite insertion
and has very low quality factor. The field map rE, =
const for multipole modes is not, of course, a physical
vector field, as for monopole modes, but it is helpful for
mode identification. The code calculates the transverse
impedance for modes, which is used for calculation of the
beam instability growth rates. Another example of the
multipole calculation is a variant of the room-temperature
"single mode" cavity, proposed by V.M. Petrov [11]. A
coaxial line with absorber is used to damp HOMs, both
longitudinal and transverse. The position and size of the
coaxial line is chosen in such a way that the fundamental
mode does not propagate into the coaxial line. The
perfectly matched load is simulated by the lossy ferrite
filling of the end part of the coaxial line (see Fig. 6 and
7). The filling parameters are chosen in such a way as to
eliminate reflection. The cavity spectrum and transverse
impedance for multipole modes was calculated by
CLANS2. The field map of the lowest dipole mode,
which is damped by the coaxil load, is shown on Fig.6 and
Fig.7.

4 CONCLUSIONS

A code has been developed that permits the deermination

of multipole modes in cavities with partially loss

dielectric and ferrite fillings. It may be used to solve the

following problems:

e calculation of multipole modes in RF cavities with
ferrite HOM dampers ,

e simulation of the cavities of RF sources having lossy
insertions ,

e simulation of the RF cavities with a matched external
load.

The code is written for Windows and UNIX platforms.
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Figure 1: Finite element mesh for CESR superconducting
cavity.
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Figure 2: Field pattern of real part of a dipole mode of
CESR superconducting cavity.
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Figure 4: Field pattern of real part of a dipole "ghost"
mode of CESR superconducting cavity.

Date:03/16799: snc

RCCM) FREQUENCY(MHZ)=282.73773

40

[N
[S

A
-

©

0

30 40 90 120 Z(CM)

Figure 6: Field pattern of real part of a dipole mode of
room-temperature "single mode" cavity.
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Figure 3: Field pattern of imaginary part of a dipole mode
of CESR superconducting cavity
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Figure 5: Field pattern of imaginary part of a dipole
"ghost" mode of CESR superconducting cavity.
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Figure 7: Field pattern of real part of a dipole mode of
room-temperature "single mode" cavity.
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