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IMPROVEMENTS IN GDFIDL

W. Bruns', Technische Universt Berlin, EN-2, Berlin, Germany

Abstract , @

The finite difference code GdfidL computes 3D electro-
magnetic fields. It has been rewritten to implement bet-
ter material dicretization with generalized diagonal fillings,
modern absorbing boundary conditions in time domain and Py
periodic boundary conditions in x- y- and z-direction when
computing eigenvalues. The generalized diagonal material
fillings reduce the frequency error caused by the boundary
approximation by a factor of 10. The modern absorbing
boundary conditions work for arbitrarily large port dimen-
sions without the need to consider any portmodes.
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Figure 1: Some examples of the possible inhomogeneous
1 GENERALIZED DIAGONAL FILLINGS fillings of a cell. Upper left: a prism. Lower left: Inter-

section of two prisms. Upper right: Intersection of three
Material-fillings are parameters of the differential equaprisms. Lower right: Union of “upper left” and “lower
tions or, when perfect electric or magnetic materials areft”. The prism in the upper left can be oriented in 2 x
present, they are boundary conditions for the differentia different kinds in a cell, the other three material fillings
equations. The approximation of the material fillings of-are possible in 4 x 3 x 2 different orientations.
ten deteriorates the quality of the solution more than the
approximation of the differential equation itself. The sim-
plest material approximation is the assumption of a homo-
geneous filling inside every single cell. This is the “stair-
case” approximation. The approximation with triangular
prismatic cells allows that there are two different materials
in each cell. This approximation is in wide use and gives
good results for geometries that are essentially cylindric.
For boundaries with general curvature, the approximation
with prismatic cells gives results only slightly better than a
staircase approximation.

Fortunately, the filling with prismatic cells can be gen-
eralized. Since the finite difference coefficients for a field
component depend only on the material in the immediate
vicinity of the edge where the componentis defined on, one

can work easily with a mesh-filling that is constructed by Figure 2: Detail of the “nose” of a reentrant cavity, dis-

boolean combination of prismatic fillings. Figure 1 showg, atized with the generalized diagonal fillings.
some of the possible discretized material distributions. A

similiar mesh filling is mentioned in [1]. Figure 2 showsan

4 .
example of the quality of the material approximation. R optimal {
In order to show the effect of the generalized filling, e improved cell '
figure 3 shows the computed resonance frequency of thex | ]
fundamental mode in a sphere as a function of the mesh=>
spacing. For comparison, the results for prismatic filling - ™
and the optimal quadratic behaviour is plotted also. The
error with the improved filling is about as low as the opti-
mal quadratic behaviour. If the boundary conditions, ie. the  _o] :
materials would have been discretized perfectly, the result 10 0 r/A % 100

would not be much better.

01 prismatic cells 1

Figure 3: Error in the computed frequency of the lowest
mode in a sphere as a function of gridplanes / radius.
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2 PERIODIC BOUNDARY CONDITIONS 3 PMLS AS ABSORBING BOUNDARY

GdfidL's resonant solver allows periodic boundary condi- CONDITIONS
tions in all three cartesian directions simultaneously. GdfidL's time domain solver uses Berenger's “Perfectly
To demonstrate the capability, the periodic boundaryiatched Layer” (PML) [2] to implement its aborbing
conditions are applied to compute the dispersion relatiafoundary conditions (ABC's). The previous GdfidL [3]
in a crystal made of an rectangular array of conductingsed an expansion in orthogonal port modes to implement
spheres connected by round rods. Figure 4 shows an gk ABC’s.
emental cell of this array. Figure 5 shows the computed Compared with the expansion in orthogonal functions,
frequencies as a function of the wave-vedtor PML’s have two major advantages: 1.) Even for extremely
large waveguides, one has negligible reflection for all fields
without having to compute with a large number of port-
modes. 2.) Itis possible to have excellent broadband ab-
sorbing boundary conditions also for waveguides that are
inhomogeneously filled with dielectrics.
Figure 6 shows such a geometry with large absorbing
planes, inhomogeneously filled with dielectrics.

Figure 6: A coax to microstrip transition. The mi-
crostripline as a waveguide with an inhomogeneous dielec-
tric is matched with an inhomogeneous PML.

Figure 4: The elemental cell of a 3D array of perfect con- 4 CONCLUSION
ducting spheres, connected by round conducting rods. The
lattice constant is the same in all three directions, theAn improved mesh filling has been implemented that re-
radius of the spheres is 0.3%5 the radius of the rods is duces the frequency error by a factor of ten as compared to
a/10. The spheres are located(at y, z) = (la,ma,na), a prismatic filling.
(¢,mmne---—2,-1,0,1,2,3---). Thg shown fieldisthe  Periodic boundary conditions are available for all three
real part of the fundamental mode with= (1,1, 1) 7. cartesian directions simultaneously.

PML'’s as absorbing boundary conditions allow inhomo-
geneously filled ports in broadband s-parameter computa-
tions.
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Figure 5: The band structure for the first few modes in the
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