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Abstract

The finite difference code GdfidL computes 3D electro-
magnetic fields. It has been rewritten to implement bet-
ter material dicretization with generalized diagonal fillings,
modern absorbing boundary conditions in time domain and
periodic boundary conditions in x- y- and z-direction when
computing eigenvalues. The generalized diagonal material
fillings reduce the frequency error caused by the boundary
approximation by a factor of 10. The modern absorbing
boundary conditions work for arbitrarily large port dimen-
sions without the need to consider any portmodes.

1 GENERALIZED DIAGONAL FILLINGS

Material-fillings are parameters of the differential equa-
tions or, when perfect electric or magnetic materials are
present, they are boundary conditions for the differential
equations. The approximation of the material fillings of-
ten deteriorates the quality of the solution more than the
approximation of the differential equation itself. The sim-
plest material approximation is the assumption of a homo-
geneous filling inside every single cell. This is the “stair-
case” approximation. The approximation with triangular
prismatic cells allows that there are two different materials
in each cell. This approximation is in wide use and gives
good results for geometries that are essentially cylindric.
For boundaries with general curvature, the approximation
with prismatic cells gives results only slightly better than a
staircase approximation.

Fortunately, the filling with prismatic cells can be gen-
eralized. Since the finite difference coefficients for a field
component depend only on the material in the immediate
vicinity of the edge where the component is defined on, one
can work easily with a mesh-filling that is constructed by a
boolean combination of prismatic fillings. Figure 1 shows
some of the possible discretized material distributions. A
similiar mesh filling is mentioned in [1]. Figure 2 shows an
example of the quality of the material approximation.

In order to show the effect of the generalized filling,
figure 3 shows the computed resonance frequency of the
fundamental mode in a sphere as a function of the mesh-
spacing. For comparison, the results for prismatic filling
and the optimal quadratic behaviour is plotted also. The
error with the improved filling is about as low as the opti-
mal quadratic behaviour. If the boundary conditions, ie. the
materials would have been discretized perfectly, the result
would not be much better.
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Figure 1: Some examples of the possible inhomogeneous
fillings of a cell. Upper left: a prism. Lower left: Inter-
section of two prisms. Upper right: Intersection of three
prisms. Lower right: Union of “upper left” and “lower
left”. The prism in the upper left can be oriented in 2 x
3 different kinds in a cell, the other three material fillings
are possible in 4 x 3 x 2 different orientations.

Figure 2: Detail of the “nose” of a reentrant cavity, dis-
cretized with the generalized diagonal fillings.
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Figure 3: Error in the computed frequency of the lowest
mode in a sphere as a function of gridplanes / radius.
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2 PERIODIC BOUNDARY CONDITIONS

GdfidL’s resonant solver allows periodic boundary condi-
tions in all three cartesian directions simultaneously.

To demonstrate the capability, the periodic boundary
conditions are applied to compute the dispersion relation
in a crystal made of an rectangular array of conducting
spheres connected by round rods. Figure 4 shows an el-
emental cell of this array. Figure 5 shows the computed
frequencies as a function of the wave-vector~k.

Figure 4: The elemental cell of a 3D array of perfect con-
ducting spheres, connected by round conducting rods. The
lattice constanta is the same in all three directions, the
radius of the spheres is 0.375a, the radius of the rods is
a=10. The spheres are located at(x; y; z) = (la;ma; na),
(l;m; n 2 � � � � 2;�1; 0; 1; 2; 3 � � �). The shown field is the
real part of the fundamental mode with~k = (1; 1; 1) �
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Figure 5: The band structure for the first few modes in the
3D array.

3 PML’S AS ABSORBING BOUNDARY
CONDITIONS

GdfidL’s time domain solver uses Berenger’s “Perfectly
Matched Layer” (PML) [2] to implement its aborbing
boundary conditions (ABC’s). The previous GdfidL [3]
used an expansion in orthogonal port modes to implement
its ABC’s.

Compared with the expansion in orthogonal functions,
PML’s have two major advantages: 1.) Even for extremely
large waveguides, one has negligible reflection for all fields
without having to compute with a large number of port-
modes. 2.) It is possible to have excellent broadband ab-
sorbing boundary conditions also for waveguides that are
inhomogeneously filled with dielectrics.

Figure 6 shows such a geometry with large absorbing
planes, inhomogeneously filled with dielectrics.

Figure 6: A coax to microstrip transition. The mi-
crostripline as a waveguide with an inhomogeneous dielec-
tric is matched with an inhomogeneous PML.

4 CONCLUSION

An improved mesh filling has been implemented that re-
duces the frequency error by a factor of ten as compared to
a prismatic filling.

Periodic boundary conditions are available for all three
cartesian directions simultaneously.

PML’s as absorbing boundary conditions allow inhomo-
geneously filled ports in broadband s-parameter computa-
tions.
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