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EIGENMODES OF SUPERCONDUCTING CAVITIES CALCULATED
ON AN APE-100 SUPERCOMPUTER (SIMD)

F. Neugebauér DESY Zeuthen, U. van RienénUniversity Rostock

Abstract percomputer for this type of computer is capable of a very
. . fast data exchange between neighboring nodes.
The construction of modern accelerators is usually sup- . ;

. S : . APE-100 supercomputers are mainly used in QCD the-
ported by the numerical determination of eigenmodes in

. - . ory where a profound experience in solving eigenvalue
the accelerating cavities. Often the rotational symmetr y P P 9 €g

o S . . : Hroblems [2] does exist. However, the parallel structure of
of the cavity is used to simplify the numerical simulation, . : X
: . . the computer requires the use of special programming tools
However, in cases where the cavity lacks rotational sym- .
. and a language (TAO) dedicated to the computer topol-
metry resp. where attached components like couplers have NSO . :
. . . ogy which is inefficient in programming advanced file 10,
to be taken into account, a fully three dimensional treat->; ) . . )
. ; . ._string evaluation and in managing pointers.
ment of the maxwell equations is necessary. This requires
more computer power than is available on a normal hig < p < P <
end workstation. Therefore, in the present approach a par-
allel SIMD super computer (APE—100) is used to computp S€°mety | | MAFIA | MAXQ
the eigenmodes of accelerating cavities. As an examp|e 'nput
parts of the superconducting TESLA structure are inve
tigated. The geometry input is parsed by MAFIA which
transfers the resulting system matrix, incorporating geo
etry and material information, to the APE-100. The resu Final
of the diagonalization procedure is then read back to t & isualization - -
MAFIA host where further data analysis and visualizatio

can be done.
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Figure 1: Schematic view of the MAXQ software interface
1 INTRODUCTION

. . The parsing of the geometry input, which is mainly a
The construction of modern accelerators is usually sup, P 9 g y \np y

orted by the numerical determination of eigenmodesin the ear task, is left to MAFIA which is running on a usual
P y 9 workstation. The resulting system matrix incorporating ge-

accelerating cavities. Often the rotational symmetry of thSmetry and material information is transfered to the APE—

cavity is used to simplify the numerical simulation. How-100 by means of the MAFIA toolkit (MTK). Then, on the
ever, in cases where the cavity plus attached rf—'componerAtEE_loo supercomputer the numerical e.xpensi’ve task of
I;c;l:]st: g?tha/lt;(wé”S,ngmue;%ﬁsﬂglynglreesesg'rmsvnhsiéohn?(la trji?ginding the lowest eigenvalues and corresponding eigenvec-
more computer pow?ar than is available g;] a norm:j hig ors ofa !argg sparse matr{x is performed. The result of the
. . : . iagonalization procedure is then read back to the MAFIA
end workstation.  In addition the three dimensional aPhost where further data analysis and visualization can be

proach allows for the simulation of fabrication errors anddone

surface roughness which are usually not considered to havel_he approach has been tested first for simple geometries

rotational symmetry. - . . such as sphere and brick in a box which allows for com-
In the framework of the Finite Integration Technique

. ,_parison with analytically known results. Next, parts of the
(FIT) Qeve_loped by Weiland and_coworkers [1] Maxwell STESLA superstructure were studied for a timing compari-
equations in integral representation are transformed to a

. . X X . ) ¥ between APE-100 and a HP 735.
of matrix equations. Using rectangular grids the discretiza-

tion volume is partitioned in two sets of cells which can be
considered dual. In the case of determining the eigenmodeg FINITE INTEGRATION TECHNIQUE
of a cavity the grid voltages along neighboring gridpoints AND THE APE-100 TOPOLOGY

are the degrees of freedom of the resulting eigenvalue pr_o?he Finite Integration Technique is based on a discretiza-

lem. The system matrix connects grid voltages of a sin: ) . .
) . o ion of Maxwell’s equations using a set of two rectangu-
gle cell only to grid voltages of adjacent cells. This nexL

. - . ar grids which can be considered dual to each other [1].
neighbor connection”-property makes the eigenvalue pro

lem especially well suited to be solved on an APE—100 sy he integral representation of Maxwell’'s equations is trans-

erred to a discrete version by specifying the integration
* Email: fneug@ifh.de paths as to be along the edges of the discretization cell. For
T Email: van.rienen@e-technikl.uni-rostock.de the case of area integrals the 6 bordering rectangles of the
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cell are chosen as the integration area. The degrees of freegment of real space. Then the matrix—vector multiplica-
dom in the discretized version of Maxwell’'s equations aréion is mainly a local operation on each node. Only in cases
not the fields themselves, but the grid voltage along neiglrhere the cell lies on the segment boundary data exchange
boring grid points or the flux over a cell surface for examwith neighboring nodes will occur. The APE-100 is per-
ple. Therefore the discretized Maxwell’s equations remaifectly suited to such a situation because the SIMD character
mathematically equivalent to the continuous case. Thered$the supercomputer accounts for a very fast data transfer
no discretization error and the discretized Maxwell’s equawith neighboring nodes without latency.

tions exactly obey the conservation law for charge and cur-

rent density. 3 RESULTS
Starting point for the calculation of eigenmodes in su-
perconducting cavities is the matrix equation The efficiency of the proposed procedure definitely de-

pends on the chosen eigenvalue algorithm. At the moment
- - I only a simple variant of a polynomial iteration algortihm
—1/2 —1/2 1/2gQT 12 7 2~

{D /*CDCD/? - DV2STSDY }u =w'd, (1) s installed. It searches for the lowest eigenvalue in the
where the matriced, C and S contain material and subspace orthogongl to all elgenv_ectors already founq. N.O
. . : convergence checking has been installed, the interation is

mesh information and represent the-lcurl — graddiv = ) . .
simply performed 5000 times. In examples this number

—V? operator. @ denotes the vector of all grid voltages - : . .
andw is the frequency of the wanted eigenmode. In thgas been fqund_ sufficiently high tp give precise .resultg. .
case of homogeneous material distribution Eq.1 is known The application of more sqph|st|cated _algonthm_s IS 1n
as Helmholtz's equation. progress. An 'accelerated conjugate—gradlept algorithm for
An important feature of the matrix equations is its Iocal—the ¢ omputation of the lowest eigenvalues is known from
ity. Actually this is due to the fact that the chosen integral—‘.att'ce._QCD and tgsted on the APE—100[2]. Another can-
tion space is restricted to the neighboring cells of the séj—'date is the Jacobi-Davidson algorithm.
lected degree of freedom. As a consequence the resultinn
system matrix of which the eigensystem has to be dete
mined is sparse with a priori known pattern of entries. £
detailed treatment of the theory yields that 13 elements
the system matrix are non zero for each degree of freedo
These elements connect to degrees of freedom belongi

to neighboring cells.
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. L L 1 Figure 3: Scetch of the part of the TESLA structure under
= consideration: Three half cells and a HOM—coupler.
%:% .
- - - 1 L~ As realistic example a part of the TESLA superstructure
/—/:% consisting of 3 half cells and the beam pipe was discretized
;_/:¢:f on a mesh of 400000 grid points. The first 10 eigenvalues
7{ L Y were searched for on a HP 735 in a regular MAFIA ses-
L sion and on the QH4 (512 nodes) running MAXQ. Even
/-/ with the simple eigenvalue algorithm the APE-100 com-
- puted the eigenvalues within only 15 minutes whereas the

HP 735 needed about three hours for the same task. The

Figure 2: Topology scheme of the APE-100: Each nodgpeed-up will be surely increased by the use of better eigen-
can access the memory of its six neighbors without latencyalue algorithms.
The whole cube is subjected to periodic boundary condi- Another important influence on the efficiency comes
tions along x-,y- and z-direction resulting in a hyper torusirom the code performance of the matrix by vector mul-
On each node resides the same amount of grid points afijglication which is the heart of every iterative eigenvalue
the associated parts of the system matrix (see Eq.1) and ggorithm for sparse matrices. Measurements show a range
vector of the grid voltages. from 10 to 20 % of the peak performance depending on the
number of grid points per node. Usually, as the number
The cells of the discretization volume are distributed t@f grid points increases the performance ratio rises. This
the nodes so that each processor is responsible for its ogives a total computer power of about 2.5 to 5 GFlops on
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Investigations considering the role of the single precision
floating point arithmetic of the APE—100 are still necessary.
The scalar products are reported to be sensitive to the sin-
gle precision / double precision problematics. Therefore
the scalar products are coded using a software emulation of
double precision arithmetics. The same procedure has al-
ready been applied in the original MAFIA package to save
memory and keep rounding errors at a minimum.

4 CONCLUSIONS

The calculation of eigenmodes on a three—dimensional ba-
sis is crucial for the simulation of accelerating cavities.
Only a fully three—dimensional treatment of Maxwell's
equations can account for effects connected to fabrication
errors and surface roughness and most important to effects
which arise from devices such as input couplers or HOM-
couplers. These coupling devices inevitably break the rota-
tional symmetry of the cavity and cannot be neglected for
the determination of eigenmodes of the cavity. However,
the lack of computional power on high end workstations
normally avoids the inclusion of the three—dimensional ef-
fects described above. Therefore in the present paper an
approach to a supercomputer solution of the eigenmode
problem of superconducting cavities has been made. The
reached speed-up by using the APE-100 is at the moment
at a factor of about 12, but it is promising that the imple-
mentation of better eigenvalue algorithms will increase the
efficiency by another factor in the range between 3 to 10.

Not only the computation time for moderate problems is
dramatically decreased, moreover the recent approach now
opens the possibility to model large scale problems of sev-
eral106 grid points.
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