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Abstract

The construction of modern accelerators is usually sup-
ported by the numerical determination of eigenmodes in
the accelerating cavities. Often the rotational symmetry
of the cavity is used to simplify the numerical simulation.
However, in cases where the cavity lacks rotational sym-
metry resp. where attached components like couplers have
to be taken into account, a fully three dimensional treat-
ment of the maxwell equations is necessary. This requires
more computer power than is available on a normal high
end workstation. Therefore, in the present approach a par-
allel SIMD super computer (APE–100) is used to compute
the eigenmodes of accelerating cavities. As an example
parts of the superconducting TESLA structure are inves-
tigated. The geometry input is parsed by MAFIA which
transfers the resulting system matrix, incorporating geom-
etry and material information, to the APE–100. The result
of the diagonalization procedure is then read back to the
MAFIA host where further data analysis and visualization
can be done.

1 INTRODUCTION

The construction of modern accelerators is usually sup-
ported by the numerical determination of eigenmodes in the
accelerating cavities. Often the rotational symmetry of the
cavity is used to simplify the numerical simulation. How-
ever, in cases where the cavity plus attached rf–components
lacks rotational symmetry a fully three dimensional treat-
ment of Maxwell’s equations is necessary which requires
more computer power than is available on a normal high
end workstation. In addition the three dimensional ap-
proach allows for the simulation of fabrication errors and
surface roughness which are usually not considered to have
rotational symmetry.

In the framework of the Finite Integration Technique
(FIT) developed by Weiland and coworkers [1] Maxwell’s
equations in integral representation are transformed to a set
of matrix equations. Using rectangular grids the discretiza-
tion volume is partitioned in two sets of cells which can be
considered dual. In the case of determining the eigenmodes
of a cavity the grid voltages along neighboring gridpoints
are the degrees of freedom of the resulting eigenvalue prob-
lem. The system matrix connects grid voltages of a sin-
gle cell only to grid voltages of adjacent cells. This “next
neighbor connection”–propertymakes the eigenvalue prob-
lem especially well suited to be solved on an APE–100 su-
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percomputer for this type of computer is capable of a very
fast data exchange between neighboring nodes.

APE–100 supercomputers are mainly used in QCD the-
ory where a profound experience in solving eigenvalue
problems [2] does exist. However, the parallel structure of
the computer requires the use of special programming tools
and a language (TAO) dedicated to the computer topol-
ogy which is inefficient in programming advanced file IO,
string evaluation and in managing pointers.
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Figure 1: Schematic view of the MAXQ software interface

The parsing of the geometry input, which is mainly a
linear task, is left to MAFIA which is running on a usual
workstation. The resulting system matrix incorporating ge-
ometry and material information is transfered to the APE–
100 by means of the MAFIA toolkit (MTK). Then, on the
APE–100 supercomputer the numerical expensive task of
finding the lowest eigenvalues and corresponding eigenvec-
tors of a large sparse matrix is performed. The result of the
diagonalization procedure is then read back to the MAFIA
host where further data analysis and visualization can be
done.

The approach has been tested first for simple geometries
such as sphere and brick in a box which allows for com-
parison with analytically known results. Next, parts of the
TESLA superstructure were studied for a timing compari-
son between APE–100 and a HP 735.

2 FINITE INTEGRATION TECHNIQUE
AND THE APE–100 TOPOLOGY

The Finite Integration Technique is based on a discretiza-
tion of Maxwell’s equations using a set of two rectangu-
lar grids which can be considered dual to each other [1].
The integral representation of Maxwell’s equations is trans-
ferred to a discrete version by specifying the integration
paths as to be along the edges of the discretization cell. For
the case of area integrals the 6 bordering rectangles of the
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cell are chosen as the integration area. The degrees of free-
dom in the discretized version of Maxwell’s equations are
not the fields themselves, but the grid voltage along neigh-
boring grid points or the flux over a cell surface for exam-
ple. Therefore the discretized Maxwell’s equations remain
mathematically equivalent to the continuous case. There is
no discretization error and the discretized Maxwell’s equa-
tions exactly obey the conservation law for charge and cur-
rent density.

Starting point for the calculation of eigenmodes in su-
perconducting cavities is the matrix equation

n
D�1=2 ~C ~DCD�1=2 �D1=2 ~ST ~SD1=2

o
~u = !2~u ; (1)

where the matricesD;C and S contain material and
mesh information and represent thecurlcurl�graddiv =

�r
2 operator. ~u denotes the vector of all grid voltages

and! is the frequency of the wanted eigenmode. In the
case of homogeneous material distribution Eq.1 is known
as Helmholtz’s equation.

An important feature of the matrix equations is its local-
ity. Actually this is due to the fact that the chosen integra-
tion space is restricted to the neighboring cells of the se-
lected degree of freedom. As a consequence the resulting
system matrix of which the eigensystem has to be deter-
mined is sparse with a priori known pattern of entries. A
detailed treatment of the theory yields that 13 elements of
the system matrix are non zero for each degree of freedom.
These elements connect to degrees of freedom belonging
to neighboring cells.

Figure 2: Topology scheme of the APE–100: Each node
can access the memory of its six neighbors without latency.
The whole cube is subjected to periodic boundary condi-
tions along x-,y- and z-direction resulting in a hyper torus.
On each node resides the same amount of grid points and
the associated parts of the system matrix (see Eq.1) and the
vector of the grid voltagesu.

The cells of the discretization volume are distributed to
the nodes so that each processor is responsible for its own

segment of real space. Then the matrix–vector multiplica-
tion is mainly a local operation on each node. Only in cases
where the cell lies on the segment boundary data exchange
with neighboring nodes will occur. The APE–100 is per-
fectly suited to such a situation because the SIMD character
of the supercomputer accounts for a very fast data transfer
with neighboring nodes without latency.

3 RESULTS

The efficiency of the proposed procedure definitely de-
pends on the chosen eigenvalue algorithm. At the moment
only a simple variant of a polynomial iteration algortihm
is installed. It searches for the lowest eigenvalue in the
subspace orthogonal to all eigenvectors already found. No
convergence checking has been installed, the interation is
simply performed 5000 times. In examples this number
has been found sufficiently high to give precise results.

The application of more sophisticated algorithms is in
progress. An accelerated conjugate–gradient algorithm for
the computation of the lowest eigenvalues is known from
Lattice–QCD and tested on the APE–100[2]. Another can-
didate is the Jacobi–Davidson algorithm.

Figure 3: Scetch of the part of the TESLA structure under
consideration: Three half cells and a HOM–coupler.

As realistic example a part of the TESLA superstructure
consisting of 3 half cells and the beam pipe was discretized
on a mesh of 400000 grid points. The first 10 eigenvalues
were searched for on a HP 735 in a regular MAFIA ses-
sion and on the QH4 (512 nodes) running MAXQ. Even
with the simple eigenvalue algorithm the APE-100 com-
puted the eigenvalues within only 15 minutes whereas the
HP 735 needed about three hours for the same task. The
speed-up will be surely increased by the use of better eigen-
value algorithms.

Another important influence on the efficiency comes
from the code performance of the matrix by vector mul-
tiplication which is the heart of every iterative eigenvalue
algorithm for sparse matrices. Measurements show a range
from 10 to 20 % of the peak performance depending on the
number of grid points per node. Usually, as the number
of grid points increases the performance ratio rises. This
gives a total computer power of about 2.5 to 5 GFlops on
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the QH4.
The total number of grid points which can be used in

the discretization is restricted due to memory limitations.
Furthermore the used eigensolver needs additional memory
for every eigenvector to be found. The memory needed per
gridpoint is 52 octets for the system matrix and 12 octets
for every eigenvector. This leads to

Mtotal = 12 � N � (n+ 5) octets (2)

for an expression for the total memory used.N is the num-
ber of gridpoints andn denotes the number of eigenvectors
to be found.

On the QH2 (8x8x4) with 16 MB per node (2) results in:

Number of eigenvectors Available gridpoints
1 60.000.000
2 51.000.000
5 36.000.000
10 24.000.000
100 3.400.000

Investigations considering the role of the single precision
floating point arithmetic of the APE–100 are still necessary.
The scalar products are reported to be sensitive to the sin-
gle precision / double precision problematics. Therefore
the scalar products are coded using a software emulation of
double precision arithmetics. The same procedure has al-
ready been applied in the original MAFIA package to save
memory and keep rounding errors at a minimum.

4 CONCLUSIONS

The calculation of eigenmodes on a three–dimensional ba-
sis is crucial for the simulation of accelerating cavities.
Only a fully three–dimensional treatment of Maxwell’s
equations can account for effects connected to fabrication
errors and surface roughness and most important to effects
which arise from devices such as input couplers or HOM–
couplers. These coupling devices inevitably break the rota-
tional symmetry of the cavity and cannot be neglected for
the determination of eigenmodes of the cavity. However,
the lack of computional power on high end workstations
normally avoids the inclusion of the three–dimensional ef-
fects described above. Therefore in the present paper an
approach to a supercomputer solution of the eigenmode
problem of superconducting cavities has been made. The
reached speed-up by using the APE–100 is at the moment
at a factor of about 12, but it is promising that the imple-
mentation of better eigenvalue algorithms will increase the
efficiency by another factor in the range between 3 to 10.

Not only the computation time for moderate problems is
dramatically decreased, moreover the recent approach now
opens the possibility to model large scale problems of sev-
eral106 grid points.
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