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Abstract
i . wherea is the radius of the cylinder. The solution of (1)
We present two- and three-dimensional models of spacé .o pe constructed by expanding in terms of the

charge in intense charged-particle beams using Greepigenfynctions of Laplace’'s equation in cylindrical
functions. In particular, we compute the electrostatlgoordmates_ We obtain the following solution

Green’s function for a periodic collinear distribution of s e o _ | (n5 )

point charges located inside of a perfectly conducting G, (x;x)=— ginle=¢) gil(6-') 1\ 7%

drift tube. As applications of the Green’s function L &S I (na (4)
description, we analyze the matching and transport of an  x[I, (ha)K, (n3.)-1, (n3.)K, (na),

initially axisymmetric beam into a quadrupole channglhere
and the interaction of a particle with its induced surface 5 277 o7z 277 27|
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and the symbol > (<) denote the greater (lesseat) ahd
1 INTRODUCTION J'. Separation of tha = 0 terms from the > 0 terms
Our electrostatic models of periodic space charge in gflds the following form foiG
I (n5<)

1

3D?

infinite conducting cylinder use both 2-D and 3-D 1 48
Green’s functions. The Green’s function provides theG;, =—G,p +—ZCOS[n(€—€')]ﬁ—y
complete electrostatic potential inside of the interaction L& lolna

region due to both point charges and induced surface {1, (na)K, (03, )= 1, (3. )K, (nar )}
charges. From this potential, the electric fields at any s P ’ ’ ||(”5<)
point inside of the cylinder can be deduced, and space +EZ ZCOS[”(S‘S Ncodi(6-6 )]W
charge dynamics may be simulated. n=b 1= !

Our paper is organized as follows. In Sec. 2, both 2-D {1, (ha)K, (n8,)-1,(ns. )K, (ha),
and 3-D Green’s functions are obtained analytically anghere G, is the 2D Green'’s function defined by,
computed. In Sec. 3, use is made of the 2-D Green's [y (5 5 )2 955 (g_g')D
function to simulate matching of an axisymmetric G,, =In +0.9. /a >0 COS O (7
intense beam into a quadrupole focusing channel, and of 8 0.2+3.°-20.0.cos(6-6') &

the 3-D Green'’s function to simulate single particle \yhen we take the limit ag - Oin (6), we recover
dynamics. the 2-D Green'’s function
Gyp = !_ing LGy (8)

(6)

2 GREEN’S FUNCTION DESCRIPTION
This is because the second and third terms of (6) vanish

The 3-D Green’s function satisfies Laplace’s equatiogS L.o0
with periodic point charge sources [1],

026G, =- 5
r

We tested the Green’s function’s convergence
(r —r’) 5(3_9')5L (z_z'), (1) properties for a triply extreme case of (6) widh - 0,
a oo, and ¢ - 0. This corresponds to choosing a
line charge in free space and examining the electric field
5, (z—z’): - 5(z—z'—nL), @) getween any two points. We found exact numerical
greement between the known result and the one
the prime%ompmed fromG3p, when we included the first 15,000

where

n=-co
L is the spacing of the point sources, _ _
coordinates denote the locations of the unit poik€rms in the summation.
charges. The Dirichlet boundary condition and the

periodic boundary conditions for translational and 3 APPLICATIONS
rotational symmetries require that
Gap (r.8,2+L;x)=G3p (.0, 2,x), 3.1 Two-Dimensional Case
Gap (1,6 +27,2,X)=G3p (1, 6,2, ), ) In many beam systems, an axisymmetric particle beam is
Gy (a.6,2,x)=0, generated at the electrode and is injected into a structure
that is not axisymmetric. Typically, the rms envelope
"Work supported by DOE and AFOSR. equation is used to determine the matching conditions
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for the system. However, the rms matching gives no (corresponding to a space-charge-depressed phase
information about the detailled phase-space evolution. advance obr =5.4).

Here, we make use of two-dimensional Green'’s function
based self-consistent simulations to perform a detailed
phase-space analysis for the matching and transport of a
high-intensity axisymmetric particle beam in a
quadrupole channel. In particular, we analyze the effects
of a nonlinear transverse macroscopic velocity profile in K Cé
the initial particles distribution. The nonlinearity in the

velocity profile models, for instance, the effects of the

Cs

concave shape of the electrode. <, —
We consider a continuous, intense beam propagating <, n
with average axial velocityjce, through a quadrupole 0.0 10 20 30
channel with magnetic field given by s/S
ﬂs)zqu(s)(yeﬁxey). (9) Fig. 1 Quadrupole coupling coefficient. Hei@,s the
Yolpme lattice period and is the filling factor.

Here, g and m are the particles charge and mass,

respectivelyy, :(1_ ﬁbz)_llz is the relativistc mass 10 analyze the effects of the nonlinear tranverse

factor, s is the axial coordinate, ang(s) is the macroscopic velocity profile in the phase-space
' . - ' a evolution of the beam we make use of self-consistent

qua_drupole cou_pllng coefficient. We agsumekfgjs) the particle simulation. We consider an initially

profile shown in Fig. 1, corresponding to a taperedyjsymmetric cold beam with particles homogeneously

channel where the first lattice period has quadrupolgsstributed up to a radius of = 2a(0) = 2(0) and with
with increasing magnetic fields that match, in an MSansverse velocitgiven by

sense, the beam into the periodic channel formed by the

] 2
remainder lattice. The lattice periodds =2y B+ VE_ r % (12)
The rms matching is obtained by analyzing the a g 2a’
solutions of the rms envelope equatlzons [2] wherer = xe,_+ ye, is the transverse displacement, the
d’a K 2 prime denotes derivative with respectsioandv is the
— tky(s)a- - =0, (20) . o .
ds 2(a+b) 16a° parameter that measures the nonlinearity in the velocity
) 2 profile (for v = 0 the velocity profile is linear). It can be
d“b K £ . o
— Ky ()b~ -——=0, (11) shown that the nonlinearity induced by the concave
ds 2(a+b) 16b shape of the electrode leadsvte 0.

12 First, we analyze the behavior of the rms envelopes.

The symbols in Fig. 2 correspond to the rms envelopes

envelopes, K = 29N, / y B2mc? is the perveance of obtained from the particle simulation for an initial
the beam. ¢ is four times the unnormarlized rmsvelocity nonlinearity ofv =0.25. The channel and beam

emittance (which is assumed to be the same fmdy), parameters are the same as thpse use_d in the rms
N, is the number of particles per unit axial length O?nvelope equa_’uons represented in the figure b)_/ the
curves. The evident agreement reveals that even in the

beam, and( ) denotes average over particles. Ifhresence of nonlinearities in the velocity profile, the
particular, for a given beam intensity and periodi®€am matches well (in an rms sense) to the quadrupole
channel paramete, (see Fig. 1), we make use of Egschannel.

(10) and (11) to determine the injection parameters for Second, we analyze what happens to the particle
the axisymmetric beam, namely, b and their distribution as the nonlinearity in the velocity profile is
derivatives ats = 0, as well as the magnetic fie|dintr0duced. The results are summarized in Flg 3, where
strengths of the quadrupoles in the first lattice perio§/€ compare particle distributions for the cases with and
denoted byC, andC, in Fig. 1. We focus here on high_wnh_o_ut initial velocity nonlinearities at three ax_ial
intensity beams, which are highly space-chard%os!tfons:gsz 0.0, 1.0 and2.5. Note that at these axial
dominated, such that the emittance terms in the enveldpsitions the beam is such ttzg$) = b(s). In Fig. 3, the
equations are negligible in comparison to the perveanlots shown on the left correspondute 0 and those on
terms. To illustrate the matching process, the curves tine right correspond te =0.25. While for v=0 the

Fig. 2 show the solution fax(s) andhb(s) for a periodic beam propagates coherently, for=0.25 the initially
channel with vacuum phase advamge= 70.8 (SC,= rounded beam develops edges after the first lattice
10.0 7=0.3) and beam perveancé&K/s = 16.0 period, becoming partially hollow subsequently {&=

where, aE<x2> and bs<y2>1/2 are the rms
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2.5). The hollow profile of the beam at §/S = 2.5 is
confirmed by analyzing the density function (not
presented here), which shows that the density at the edge
istwice the density at the center of the beam.
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Fig. 2 RMS envelopes obtained from the rms envelope
eguations and self-consistent simulation.

6.0 6.0
5/8=0.0
3.0
¥ 0.0
-3.0
6.0
-6.0
6.0
3.0
y 00
-3.0
6.
%0
6.0
3.0
Y 0.0
-3.0
-6.0
6060 3.0 0.0 3.0 6.0 -6.0 3.0 0.0 3.0 6.0

Fig. 3 Particles distribution for v =0 (left) and v =0.25
(right). The coordinates x and y are normalized to /€S .

To summarize briefly, we have analyzed the
matching and transport of an initially axisymmetric high-
intensity beam in a tapered quadrupole channel. The rms
envelope eguations have been used to determine the

matching conditions. Using a two-dimensional Green'’s
function based self-consistent simulation code, we ha

macroscopic velocity profile on the beam dynamics. It
has been found that the rms radii evolution agrees with
the rms envelope equation analysis, and that the presence
of nonlinearities in the velocity leads to changes in the
detailed particles distribution and the onset of beam
hollowing.

3.2 Three-Dimensional Case

As a necessary component of a one-particle simulation,
we compute the electrostatic self-field (field of a particle
due to its induced surface charge. This radial electric
field is given by the following expression:

4 o N, (ho)K, (ha)

877 « Nl (n
E, =21 on 0
= @afﬁ% 2 lo(nar)
+@i - nl|(n5)l|’(n5)K|(na')_
L2 n=1 =1

li(na)

Utilizing the electrostatic self-field force, we are able
to simulate one string of particles interacting with its
induced charge. We apply a constant magnetic field
parallel to the axis of the pipe. The Lorentz forces are
only in the transverse direction, so longitudinal motion
can be ignored. As an example, a radially confined orbit
is shown in Fig. 4 foa = 2¢(initial) = 0.2.

(13)

Fig. 4 Trajectory of a trapped particle in the conducting
pipe with initial conditions PR&=0, P=0.001
(normalized taB77c/gL’B), and&=327/mc?/L°B*=0.001.

4 SUMMARY

Both two- and three-dimensional models of space charge
in intense charged-particle beams have been presented
using Green'’s functions, and applied, respectively, in the
analyses of the matching and transport of an initially
axisymmetric beam into a quadrupole channel and of the
interaction of a particle with its induced surface charge.
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