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Abstract

We present two- and three-dimensional models of space
charge in intense charged-particle beams using Green’s
functions. In particular, we compute the electrostatic
Green’s function for a periodic collinear distribution of
point charges located inside of a perfectly conducting
drift tube. As applications of the Green’s function
description, we analyze the matching and transport of an
initially axisymmetric beam into a quadrupole channel
and the interaction of a particle with its induced surface
charge.

1  INTRODUCTION
Our electrostatic models of periodic space charge in an
infinite conducting cylinder use both 2-D and 3-D
Green’s functions.  The Green’s function provides the
complete electrostatic potential inside of the interaction
region due to both point charges and induced surface
charges.  From this potential, the electric fields at any
point inside of the cylinder can be deduced, and space
charge dynamics may be simulated.

Our paper is organized as follows.  In Sec. 2, both 2-D
and 3-D Green’s functions are obtained analytically and
computed.  In Sec. 3, use is made of the 2-D Green’s
function to simulate matching of an axisymmetric
intense beam into a quadrupole focusing channel, and of
the 3-D Green’s function to simulate single particle
dynamics.

2  GREEN’S FUNCTION DESCRIPTION
The 3-D Green’s function satisfies Laplace’s equation
with periodic point charge sources [1],
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L is the spacing of the point sources, the primed
coordinates denote the locations of the unit point
charges.  The Dirichlet boundary condition and the
periodic boundary conditions for translational and
rotational symmetries require that
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where a is the radius of the cylinder.  The solution of (1)
can be constructed by expanding in terms of the
eigenfunctions of Laplace’s equation in cylindrical
coordinates.   We obtain the following solution,
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and the symbol > (<) denote the greater (lesser) ofδ  and
δ ′ .  Separation of the n = 0 terms from the n > 0 terms
yields the following form for G3D,
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where DG2  is the 2D Green’s function defined by,
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When we take the limit as 0→L in (6), we recover
the 2-D Green’s function
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This is because the second and third terms of (6) vanish
as 0→L .

We tested the Green’s function’s convergence
properties for a triply extreme case of (6) with 0→′δ ,

∞→α , and 0→δ .  This corresponds to choosing a
line charge in free space and examining the electric field
between any two points.   We found exact numerical
agreement between the known result and the one
computed from DG3 , when we included the first 15,000

terms in the summation.

3  APPLICATIONS

3.1 Two-Dimensional  Case

In many beam systems, an axisymmetric particle beam is
generated at the electrode and is injected into a structure
that is not axisymmetric. Typically, the rms envelope
equation is used to determine the matching conditions
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for the system. However, the rms matching gives no
information about the detailed phase-space evolution.
Here, we make use of two-dimensional Green’s function
based self-consistent simulations to perform a detailed
phase-space analysis for the matching and transport of a
high-intensity axisymmetric particle beam in a
quadrupole channel. In particular, we analyze the effects
of a nonlinear transverse macroscopic velocity profile in
the initial particles distribution. The nonlinearity in the
velocity profile models, for instance, the effects of the
concave shape of the electrode.

We consider a continuous, intense beam propagating
with average axial velocity βbcez through a quadrupole
channel with magnetic field given by
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Here, q and m are the particles charge and mass,

respectively, ( ) 2/121
−−= bb βγ  is the relativistic mass

factor, s is the axial coordinate, and κq(s) is the
quadrupole coupling coefficient. We assume for κq(s) the
profile shown in Fig. 1, corresponding to a tapered
channel where the first lattice period has quadrupoles
with increasing magnetic fields that match, in an rms
sense, the beam into the periodic channel formed by the
remainder lattice. The lattice period is S.

The rms matching is obtained by analyzing the
solutions of the rms envelope equations [2]
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where, 
2/12xa ≡  and 

2/12yb ≡  are the rms

envelopes, 2232 /2 mcNqK bbb βγ=  is the perveance of

the beam, ε  is four times the unnormarlized rms
emittance (which is assumed to be the same for x and y),

bN  is the number of particles per unit axial length of

beam, and  denotes average over particles. In

particular, for a given beam intensity and periodic
channel parameter C3  (see Fig. 1), we make use of Eqs.
(10) and (11) to determine the injection parameters for
the axisymmetric beam, namely a, b and their
derivatives at s = 0, as well as the magnetic field
strengths of the quadrupoles in the first lattice period,
denoted by C1 and C2 in Fig. 1. We focus here on high-
intensity beams, which are highly space-charge
dominated, such that the emittance terms in the envelope
equations are negligible in comparison to the perveance
terms. To illustrate the matching process, the curves in
Fig. 2 show the solution for a(s) and b(s) for a periodic
channel with vacuum phase advance σo = 70.8o  (S2C3 =
10.0, η = 0.3) and beam perveance SK/ε = 16.0

(corresponding to a space-charge-depressed phase
advance of σ = 5.4o).
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Fig. 1 Quadrupole coupling coefficient. Here, S is the
lattice period and η is the filling factor.

To analyze the effects of the nonlinear tranverse
macroscopic velocity profile in the phase-space
evolution of the beam we make use of self-consistent
particle simulation. We consider an initially
axisymmetric cold beam with particles homogeneously
distributed up to a radius of rb = 2a(0) = 2b(0) and with
transverse velocity given by

                    

















−+

′
=′

2

2

2
11

aa

a r
rr ν ,                      (12)

where r = xex + yey is the transverse displacement, the
prime denotes derivative with respect to s, and ν is the
parameter that measures the nonlinearity in the velocity
profile (for ν = 0 the velocity profile is linear). It can be
shown that the nonlinearity induced by the concave
shape of the electrode leads to ν > 0.

First, we analyze the behavior of the rms envelopes.
The symbols in Fig. 2 correspond to the rms envelopes
obtained from the particle simulation for an initial
velocity nonlinearity of ν = 0.25. The channel and beam
parameters are the same as those used in the rms
envelope equations represented in the figure by the
curves. The evident agreement reveals that even in the
presence of nonlinearities in the velocity profile, the
beam matches well (in an rms sense) to the quadrupole
channel.

Second, we analyze what happens to the particle
distribution as the nonlinearity in the velocity profile is
introduced. The results are summarized in Fig. 3, where
we compare particle distributions for the cases with and
without initial velocity nonlinearities at three axial
positions: s/S = 0.0, 1.0 and 2.5. Note that at these axial
positions the beam is such that a(s) = b(s). In Fig. 3, the
plots shown on the left correspond to ν = 0 and those on
the right correspond to ν = 0.25. While for ν = 0 the
beam propagates coherently, for ν = 0.25 the initially
rounded beam develops edges after the first lattice
period, becoming partially hollow subsequently (at s/S =
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2.5). The hollow profile of the beam at s/S = 2.5 is
confirmed by analyzing the density function (not
presented here), which shows that the density at the edge
is twice the density at the center of the beam.
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Fig. 2 RMS envelopes obtained from the rms envelope
equations and self-consistent simulation.

Fig. 3 Particles distribution for ν = 0 (left) and ν = 0.25

(right). The coordinates x and y are normalized to Sε .

 To summarize briefly, we have analyzed the
matching and transport of an initially axisymmetric high-
intensity beam in a tapered quadrupole channel. The rms
envelope equations have been used to determine the
matching conditions.  Using a two-dimensional Green’s
function based self-consistent simulation code, we have
investigated the effects of an initial nonlinear transverse

macroscopic velocity profile on the beam dynamics. It
has been found that the rms radii evolution agrees with
the rms envelope equation analysis, and that the presence
of nonlinearities in the velocity leads to changes in the
detailed particles distribution and the onset of beam
hollowing.

3.2 Three-Dimensional  Case

As a necessary component of a one-particle simulation,
we compute the electrostatic self-field (field of a particle
due to its induced surface charge. This radial electric
field is given by the following expression:
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Utilizing the electrostatic self-field force, we are able
to simulate one string of particles interacting with its
induced charge.  We apply a constant magnetic field
parallel to the axis of the pipe.  The Lorentz forces are
only in the transverse direction, so longitudinal motion
can be ignored. As an example, a radially confined orbit
is shown in Fig. 4 forα δ= =2 0 2( ) .initial .

Fig. 4 Trajectory of a trapped particle in the conducting
pipe with initial conditions Pr=θ=0, Pθ=0.001
(normalized to 8π2c/qL2B), and ξ=32π2mc2/L3B2=0.001.

 4  SUMMARY
 Both two- and three-dimensional models of space charge
in intense charged-particle beams have been presented
using Green’s functions, and applied, respectively, in the
analyses of the matching and transport of an initially
axisymmetric beam into a quadrupole channel and of the
interaction of a particle with its induced surface charge.
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