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THE MODEL OF ENSEMBLES FOR THE BEAM DYNAMICS
SIMULATION *

A. Novokhatski, and T. Weiland, TEMF, TU Darmstadt
Abstract 2 SELF-CONSISTENT BEAM MODEL

It is proposed to use the "Ensembles” of particles foHowever, the Viasov equation can be numerically solved
modeling the beams in accelerators. Each ensemble deuch easily” for the linear forces. In this case the distri-
scribes the longitudinal and transverse dynamics of tHaution function is described by a small number of param-
nonmonochromatic bunch in the six dimensional phaseters, only by the first and second order moments. Let us
space, taking into account all coupling effects, comingefine such a bunch as an "Ensemble”. If we have the full
from the relativistic relation between variation of the velocdescription of the dynamics of an Ensemble, then by a set
ity projection and energy spread. Ensemble parameters ik Ensembles we can describe the dynamics of any beam
clude average values of coordinate and momentum, bunahd all kinds of forces. Nevertheless, even one Ensemble
dimensions, noncorrelated momentum spread and all seaan give a lot of information about beam dynamics in accel-
ond order correlation parameters. Self- consistent equerator. Opposite to the usual model [1], [2], [3] for the sec-
tions for the Ensemble are derived from the Vlasov equand order moments, the model of Ensembles [4] includes
tion. The presentation by vector and matrix gives the pogengitudinal motion of the particles, and all corresponding
sibility to define an implicit algorithm for computer sim- correlations with transverse motion.

ulations. Examples of application of this model for the

calculation of the beam dynamics in the accelerators a1l  Presentation by Vectors and Matrices
presented.

The average coordinate and momentum of the Ensemble
are described by vectos andP. The second order mo-

1 INTRODUCTION ments

In the beam dynamics calculations the beam is usually aeer = (&) = /f(t’ T P)NE ) — ))dT
scribed by a set of "macro” particles. "Macro” particle is an ) )
ensemble of particles for the bunch field calculation. How@"® grouped in matricel },{L} and{T}
ever for the trajectory calculation, a "macro” particle be- .
comes a single particle. The motion of the particles insidé®™ — Meizy Lik = Mayp, Tik = Mp,p, 4,k =12,y,2
"macro” particle is not considered. Therefore, the simulathe determinant of the matriVI}
tion of the beams with small emittance needs a relatively
large number of 'macro” particles. V? = det{M} = det ( I?t ,:I[" )
There is another possibility to describe the beam by the

phase distribution functioyfi( 7, 7’) of particle density in is the square of the 6 dimensional normalized emittance
the phase space of coordinates and momenta. Phase digfithe Ensemble. In the case of the uncoupling motions the

bution functionf satisfies the Vlasov equation full emittance is the multiplication of emittance projections
d 0 - ¥l SN ol _ \/ 2, 2 _ 2 _ _ A2
—f= —f +grad,(f) e £c-i-gradp(f) e— =0 Cv =\ Or Tp, (vpo)? = [ My My, p, — M7,
dt ot ~ me

However, if the correlated moments appear, then the emit-
where normalized momentunp{) and energy) are used tance projections are changed in order to keep the full emit-
- tance constant. For example, the full emittance is the dif-
E feren f th itive val
Tt 4= =\ I+ DT erence of the positive values
mc mc

2_ 2,22 2 2 2
\% —ey(emez—M Rt

. . . —
and l_?). is the forc_e, acting on the partlclea% P = 7% whenthe moment/,,. is excited.
The direct numerical solution of the Vlasov equation in

a 6 dimensional space needs a great amount of the com- . .
puter memory. If we take only 50 mesh points for eacl?‘2 Time Equations

direction, then the total number of mesh points will beTime equations for the Ensemble parameters can be derived
50° = 1.56 1019, that is equal to the real number of parti-from the Vlasov equation under two assumptions:

cles in the bunch. 1) If the applied forces satisfy the condition
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for any Ensemble parametgr then the full emittance is 3.2  Emittance Equation

invariant. e can also estimate the modification of the full emit-

2) The energy deviationin the beam is not very large angnce for the case, when the first assumption is not fulfilled.

the energy can be presented in the following expanded Wi, o, \ye have only longitudinal force and transverse aver-
% = % — 7% Yol Pn) (Pn — (Pn))+ age momenta are zero, the model gives the following equa-
+3((pn — (pn))? — My, p,)]  tionforlongitudinal emittance

D = DM (e () ) 2y (2 ()

F,
mc?

where~,, is the average beam energy )
Ym = [14 ) [pn)* + Mp,p,] : .
Zn: b When the force i, = amc?®p. (proportional to the mo-
In this presentation the average velocitycontains addi- mentum) the equation takes the form
tionally the momentum correlations 9
=\ = -3 Dk ) Mp,py c
Y Tm 'Yrgn Pk

Under these conditions the Viasov equation gives the fofrom this equation we get the exponential growth or damp-
mula for average value ing of the emittance in time. The modulelyfo determines

the effective time and the sign of gives the type of the

n

o = (gradrp e ) + (gradpp e ——3) force: generatofa > 0) or friction (o < 0). We note, that
With this formula we present the time equations for mo@t the same time the transverse emittances are invariant
ments in vector and matrix form: D2y 9.2,
9 5 cot ® cot Y

—P

cOot
9 . 1 1 _ 3.3 Bunch Compression in Free Space
—X=—{(E- 5 T}oP i - .
cot Ym Vo Here we check the modification of the relativistic bunch in

i{S} — (V}@{L+LY free space, when it has negative initial correlated momen-
cot

5 tum spread\y, , or M), , or MY, If (p.) > (p;), then
il = At At
i1 = (VOTHEeS+FpoL) Mao = My, + 2505, o+ (22 M
a m m
—{T} ={Fx®L+F, T} + {Fx®L+F, ® T}* At At
cor 1} = B O LE Fp @ T} T oL+ Fy 7T M. = M2+ 255008, 4 (P,
Matrix {V} is the symmetric matrix of combinations of Tm Tm
velocity pairs ¢; andvy) The minimum size of the bunch is determined by the emit-
1 P tance and uncorrelated momentum spread
Vik = — (0 — v, -
BT, G )= NP1 Y
. ) min(o;) = M, — 0 =30 T 2
671k: =1, ifi =k andé,-k =0, if ¢ 75 k Mpwpm Mpwpw Da

VectorF is the normalized average force

1 _
F=—2FX,P
mc2 (X, P)

4 APPLICATION OF THE MODEL

. , The derived equations for the Ensemble parameters are

Matrices {Fx} and {F},} are coordinate and momentump,,jinear. So the numerical calculations need implicit al-

derivatives of the force gorithm. Nevertheless there are some analytical solutions
10 ik 1 9 for simple cases. We present examples of analytical and

FF=—_—Fi|3p FF=——F|xp : :
T me2 Oz, . P me? Opy, . numerical solutions.

3 PROPERTIES OF THE ENSEMBLE 4.1 The Ensemble in an Accelerating Structure

3.1 Fundamental Conservation Laws Let the center of the bunch move with the speed equal to the

We can check the model for realization of the dynamic Iaw§.hase velocity of the accelerating wave, having the phase

for average values. It is easy to show, that from the pr ﬁsﬂ:iceTen:D}%; icceleér%tmg f?“’e is approximated by
sented above equations one obtains: elinear parts; = e+ 0E(z - 2)

i< >2_i2_2<—>.i> e . e 2 .
cf)t Y - Cat’}/m - p mc2 e = WEH/CC COS ©o (5E = WEGCCT S11 @
e =
%_’ = %(? x P)= (7T x %) The model gives the following equations ff, . andM .
So, the model fulfills the fundamental conservation laws o )
for average momentum, energy and angular momentum. ot T 7_3sz2
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In magnetic field, initial 5P=+-1%

o 3 o a,yS 600
— (v, — M, 46EM,,, = 0EM,,—=

cot (Y cot” = )+ Pz cot 500
From these equations we can estimate the frequency of th

phase oscillationss, whensin ¢y > 0

/ oF 21 eFyee .
w/e= 4| —= =] — sin
~3 A y3mc? o

We've got exactly the M.Kapchinskiy formula [1].
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4.2 Space Charge Effect

We use the estimation for the space charge force, derived
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out for the relativistic bunch of ellipse form, in the approx- 0 5 10 15 20 25 30 35 40 45 50 55
imation of the homogenous charge density [4] ) _ Number of turns
N B ‘ Figure 1: Average momentum, momentum spread, average
— = 0—27 — 5 V, = (\/5)3‘ /det{S} X-coordinate, bunch size and average Z-coordinate.
mc Y4 Vg

- : _ _ 4.4  Chicane Bunch Compression
The force is linear with the distande and inversely pro-

portional to the effective geometrical volurig. N is the Chicane bunch compressor consists of four rectangular

number of particles in the bunchy is the radius of the dipole magnets, where the bunch is deflected in transverse

electronry = ¢2/mc?. direction and then is forwarded back. When the bunch gets
Our model gives the following equations for the transthe transverse displacemeXit it also gets correlated mo-

verse beam size, = /M, and correlated momentum MentsM, .M, andM,,, ., M., that change the emit-

spreads,, = \/M,.. tance projection e
9 2 Ae; = 2 Z?zpz z(igpm
CT%MMC = ,y_mepT, Tm
92 s In a symmetrical chicane the emittance projection comes
2572 Mep. — %szw =0 back to the initial value. The space charge effect destroys

the symmetry of the compression dynamics and increases
the emittance projection. Results of computer simulations
are presented on Fig.2.

The effective distancd.;;, where the transverse beam
size increases more than twice is

Lo [m 73 5v50,0,0,
eff & roN

One can find that this estimation is in very good agreement
with the classical consideration [1], [3]. The effective pa-
rameter for the longitudinal size 1g,, times larger.

4.3 The Ensemble in the Magnetic Field

A relativistic bunch with initial energy spread is injected
into the magnetic field. Particles with different energy have
different radiuses of rotation and therefore different time

Bunch size (mm)

for one turnT” = (T') 5. (T) and (y) are respectively the oo LY MR ... JA0NR). . JNEIVH

.0 o —— Lt
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Distance (mm)

average period and energy. The bunch siie

. t oy
o =(R) Sm(%m w) Figure 2: Bunch compression. The dashed lines show re-
sults without consideration of the space charge effect.
After the timeT = @% the bunch takes the circumfer-
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