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Abstract

It is proposed to use the ”Ensembles” of particles for
modeling the beams in accelerators. Each ensemble de-
scribes the longitudinal and transverse dynamics of the
nonmonochromatic bunch in the six dimensional phase
space, taking into account all coupling effects, coming
from the relativistic relation between variation of the veloc-
ity projection and energy spread. Ensemble parameters in-
clude average values of coordinate and momentum, bunch
dimensions, noncorrelated momentum spread and all sec-
ond order correlation parameters. Self- consistent equa-
tions for the Ensemble are derived from the Vlasov equa-
tion. The presentation by vector and matrix gives the pos-
sibility to define an implicit algorithm for computer sim-
ulations. Examples of application of this model for the
calculation of the beam dynamics in the accelerators are
presented.

1 INTRODUCTION

In the beam dynamics calculations the beam is usually de-
scribed by a set of ”macro” particles. ”Macro” particle is an
ensemble of particles for the bunch field calculation. How-
ever for the trajectory calculation, a ”macro” particle be-
comes a single particle. The motion of the particles inside
”macro” particle is not considered. Therefore, the simula-
tion of the beams with small emittance needs a relatively
large number of ’macro” particles.

There is another possibility to describe the beam by the
phase distribution functionf(−→r ,−→p ) of particle density in
the phase space of coordinates and momenta. Phase distri-
bution functionf satisfies the Vlasov equation

d

dt
f =

∂f

∂t
+ −−−→

gradr(f) •
−→p
γ

c + −−−→
gradp(f) •

−→
F

mc
= 0

where normalized momentum (−→p ) and energy (γ) are used

−→p =
−→
P

mc
γ =

E
mc2

=
√

1 + −→p • −→p

and
−→
F is the force, acting on the particlesddt

−→p =
−→
F
mc .

The direct numerical solution of the Vlasov equation in
a 6 dimensional space needs a great amount of the com-
puter memory. If we take only 50 mesh points for each
direction, then the total number of mesh points will be
506 = 1.56 1010, that is equal to the real number of parti-
cles in the bunch.
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2 SELF-CONSISTENT BEAM MODEL

However, the Vlasov equation can be numerically solved
”much easily” for the linear forces. In this case the distri-
bution function is described by a small number of param-
eters, only by the first and second order moments. Let us
define such a bunch as an ”Ensemble”. If we have the full
description of the dynamics of an Ensemble, then by a set
of Ensembles we can describe the dynamics of any beam
and all kinds of forces. Nevertheless, even one Ensemble
can give a lot of information about beam dynamics in accel-
erator. Opposite to the usual model [1], [2], [3] for the sec-
ond order moments, the model of Ensembles [4] includes
longitudinal motion of the particles, and all corresponding
correlations with transverse motion.

2.1 Presentation by Vectors and Matrices

The average coordinate and momentum of the Ensemble
are described by vectors̄X andP̄. The second order mo-
ments

Mξν = 〈ξν〉 =
∫

f(t,−→r ,−→p )(ξ − 〈ξ〉)(ν − 〈ν〉)d−→r d−→p

are grouped in matrices{S},{L} and{T}
Sik = Mxixk

Lik = Mxipk
Tik = Mpipk

i, k = x, y, z

The determinant of the matrix{M}
V 2 = det{M} = det

(
S L
Lt T

)

is the square of the 6 dimensional normalized emittance
of the Ensemble. In the case of the uncoupling motions the
full emittance is the multiplication of emittance projections

εν =
√

σν
2σpν

2 − 〈νpν〉2 =
√

MννMpνpν − M2
νpν

However, if the correlated moments appear, then the emit-
tance projections are changed in order to keep the full emit-
tance constant. For example, the full emittance is the dif-
ference of the positive values

V 2 = ε2y(ε
2
xε2z − M2

xpz
σ2

px
σx

2)

when the momentMxpz is excited.

2.2 Time Equations

Time equations for the Ensemble parameters can be derived
from the Vlasov equation under two assumptions:

1) If the applied forces satisfy the condition

〈µ • −−−→gradp

−→
F

mc2
〉 = 0
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for any Ensemble parameterµ, then the full emittance is
invariant.

2) The energy deviation in the beam is not very large and
the energy can be presented in the following expanded way
1
γ = 1

γm
− 1

γ3
m

∑
n[〈pn〉(pn − 〈pn〉)+

+ 1
2 ((pn − 〈pn〉)2 − Mpnpn)]

whereγm is the average beam energy

γm =
√

1 +
∑

n

[〈pn〉2 + Mpnpn ]

In this presentation the average velocity−→v contains addi-
tionally the momentum correlations

vn = 〈pn

γ
〉 =

〈pn〉
γm

− 1
γ3

m

∑
k

〈pk〉Mpnpk

Under these conditions the Vlasov equation gives the for-
mula for average value

∂

c∂t
〈µ〉 = 〈−−−→gradrµ •

−→p
γ
〉 + 〈−−−→gradpµ •

−→
F

mc2
〉

With this formula we present the time equations for mo-
ments in vector and matrix form:

∂

c∂t
P̄ = F

∂

c∂t
X̄ =

1
γm

{E− 1
γ2
m

T} ⊗ P̄

∂

c∂t
{S} = {V} ⊗ {L + Lt}

∂

c∂t
{L} = {V ⊗T + Fx ⊗ S + Fp ⊗ L}

∂

c∂t
{T} = {Fx ⊗ L + Fp ⊗T} + {Fx ⊗ L + Fp ⊗T}t

Matrix {V} is the symmetric matrix of combinations of
velocity pairs (vi andvk )

Vik =
1

γm
(δik − vivk ) vk =

p̄k

γm

δik = 1, if i = k andδik = 0, if i 6= k
VectorF is the normalized average force

F =
1

mc2
F(X̄, P̄)

Matrices{Fx} and{Fp} are coordinate and momentum
derivatives of the force

F ik
x =

1
mc2

∂

∂xk
F i |X̄,P̄ F ik

p =
1

mc2

∂

∂pk
F i |X̄,P̄

3 PROPERTIES OF THE ENSEMBLE

3.1 Fundamental Conservation Laws

We can check the model for realization of the dynamic laws
for average values. It is easy to show, that from the pre-
sented above equations one obtains:

∂

c∂t
〈γ〉2 =

∂

c∂t
γ2

m = 2〈−→p •
−−→
F

mc2
〉

∂

c∂t

−→M =
∂

c∂t
〈−→r ×−→p 〉 = 〈−→r ×

−−→
F

mc2
〉

So, the model fulfills the fundamental conservation laws
for average momentum, energy and angular momentum.

3.2 Emittance Equation

We can also estimate the modification of the full emit-
tance for the case, when the first assumption is not fulfilled.
When we have only longitudinal force and transverse aver-
age momenta are zero, the model gives the following equa-
tion for longitudinal emittance

∂

c∂t
ε2z = 2Mzz〈(pz−〈pz〉) Fz

mc2
〉−2Mzpz〈(z−〈x〉) Fz

mc2
〉

When the force isFz = αmc2pz (proportional to the mo-
mentum) the equation takes the form

∂

c∂t
ε2z − 2αε2z = 0

From this equation we get the exponential growth or damp-
ing of the emittance in time. The module of1/α determines
the effective time and the sign ofα gives the type of the
force: generator(α > 0) or friction (α < 0). We note, that
at the same time the transverse emittances are invariant

∂

c∂t
ε2x = 0

∂

c∂t
ε2y = 0

3.3 Bunch Compression in Free Space

Here we check the modification of the relativistic bunch in
free space, when it has negative initial correlated momen-
tum spreadM0

xpx
, or M0

ypy
, or M0

zpz
If 〈pz〉 � 〈px〉, then

Mxx = M0
xx + 2

c∆t

γm
M0

xpx
+ (

c∆t

γm
)2M0

pxpx

Mzz = M0
zz + 2

c∆t

γ3
m

M0
zpz

+ (
c∆t

γ3
m

)2M0
pzpz

The minimum size of the bunch is determined by the emit-
tance and uncorrelated momentum spread

min(σ2
x) = M0

xx − (M0
xpx

)2

M0
pxpx

=
ε2x

M0
pxpx

=
ε2x
σ2

px

4 APPLICATION OF THE MODEL

The derived equations for the Ensemble parameters are
nonlinear. So the numerical calculations need implicit al-
gorithm. Nevertheless there are some analytical solutions
for simple cases. We present examples of analytical and
numerical solutions.

4.1 The Ensemble in an Accelerating Structure

Let the center of the bunch move with the speed equal to the
phase velocity of the accelerating wave, having the phase
displacementϕ0. Accelerating force is approximated by
the linear partFz

mc2 = e + δE(z − z̄)

e =
e

mc2
Eacc cosϕ0 δE =

e

mc2
Eacc

2π

λ
sinϕ0

The model gives the following equations forMzz andMzpz

∂

c∂t
Mzz =

2
γ3

m

Mzpz
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∂

c∂t
(γ3

m

∂

c∂t
Mzpz ) + 4δEMzpz = δEMzz

∂γ3
m

c∂t
From these equations we can estimate the frequency of the
phase oscillations$, whensinϕ0 > 0

$/c =

√
δE

γ3
=

√
2π

λ

eEacc

γ3mc2
sinϕ0

We’ve got exactly the M.Kapchinskiy formula [1].

4.2 Space Charge Effect

We use the estimation for the space charge force, derived
out for the relativistic bunch of ellipse form, in the approx-
imation of the homogenous charge density [4]−→

F

mc2
=

r0N

γ2

−→
R

Vg
= æ−→

R Vg = (
√

5)3
√

det{S}

The force is linear with the distanceR and inversely pro-
portional to the effective geometrical volumeVg. N is the
number of particles in the bunch,r0 is the radius of the
electronr0 = e2/mc2.

Our model gives the following equations for the trans-
verse beam sizeσx =

√
Mxx and correlated momentum

spreadσpx =
√

Mpxx

∂

c∂t
Mxx =

2
γm

Mxpx

∂2

c2∂t2
Mxpx − 4æ

γm
Mxpx = 0

The effective distanceL⊥
eff , where the transverse beam

size increases more than twice is

L⊥
eff =

√
γm

æ
=

√
γ3

m5
√

5σxσyσz

r0N

One can find that this estimation is in very good agreement
with the classical consideration [1], [3]. The effective pa-
rameter for the longitudinal size isγm times larger.

4.3 The Ensemble in the Magnetic Field

A relativistic bunch with initial energy spreadδγ is injected
into the magnetic field. Particles with different energy have
different radiuses of rotation and therefore different time
for one turnT = 〈T 〉 γ

〈γ〉 . 〈T 〉 and〈γ〉 are respectively the
average period and energy. The bunch sizeσ is

σ = 〈R〉 sin(2π
t

〈T 〉
δγ

〈γ〉)

After the timeT = 〈T 〉
4

〈γ〉
δγ the bunch takes the circumfer-

ence of the circle of the radius〈R〉 Now we use numerical
calculations to study this phenomena in the frame of our
model. We have made calculations for the bunch with ini-
tial energy spread of±1 %. Computer results are shown on
Fig.1. After 25 turns, the center of the bunch comes to the
center of rotation and the beam size reaches the value of
the rotation radius, the average momentum and its projec-
tions become zero, but the energy spread reaches maximum
value. This position is repeated with the period of 50 turns.

0 5 10 15 20 25 30 35 40 45 50 55
Number of turns

−200

−100

0

100

200

300

400

500

600

M
om

en
tu

m
 a

nd
 c

oo
rd

in
at

e

In magnetic field, initial δP=+−1%

<P>

δP

<X>

Bunch size

<Z>

Figure 1: Average momentum, momentum spread, average
X-coordinate, bunch size and average Z-coordinate.

4.4 Chicane Bunch Compression

Chicane bunch compressor consists of four rectangular
dipole magnets, where the bunch is deflected in transverse
direction and then is forwarded back. When the bunch gets
the transverse displacementX , it also gets correlated mo-
mentsMxpz ,Mzpx andMpxpz , Mxz, that change the emit-
tance projection

∆ε2x =
X2

γ2
m

M0
pzpz

M0
pxpx

In a symmetrical chicane the emittance projection comes
back to the initial value. The space charge effect destroys
the symmetry of the compression dynamics and increases
the emittance projection. Results of computer simulations
are presented on Fig.2.
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Figure 2: Bunch compression. The dashed lines show re-
sults without consideration of the space charge effect.
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