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Abstract

While the two collimation insertions in the LHC must
have similar basic layouts and match to almost identical dis-
persion suppressors to respect the geometry of the existing
tunnel, their different roles impose opposite requirements
on the normalized dispersion within them. For betatron col-
limation it must be near zero, while for momentum collima-
tion it must have a peak at the location of the primary col-
limator, immediately after the dispersion suppressor. The
insertion lattice solution found for the latter case requires
up to 30% asymmetry in the quadrupole gradients (in line
with the current trend in LHC lattice development to break
the exact antisymmetry within insertions). To achieve this
using twin-aperture warm quadrupoles, the modules mak-
ing up each quadrupole will be wired in such a way that the
two beams still see the same sequence of focusing fields.
We describe the optimum setup, flexibility and collimation
quality for the two insertions.

1 INTRODUCTION

In the LHC, composed of superconducting magnets in
which proton beams of both high energy and high current
will be stored, the local power deposition associated with
beam losses will be larger than the magnet quench level by
several orders of magnitude [1],[2]. In addition the large
size of the ring and the need for high magnetic field re-
quires keeping the geometrical aperture (defined by the vac-
uum chamber) to a bare minimum. Not far outside the dy-
namic aperture the transverse motion of the particles be-
comes chaotic and can form a primary halo diffusing to-
wards the geometrical aperture. The transverse extent of the
halo is kept below the chaotic limit by absorbing these pro-
tons in primary collimators made of metallic blocks, called
jaws below. At all energies protonabsorption in the primary
jaws is far from complete [2]. Protons which are not ab-
sorbed may be scattered elastically off the jaw, thus form-
ing a secondary halo which can also induce quenches. Sec-
ondary jaws are therefore necessary to limit the extent of the
secondary halo to a value smaller than the geometrical aper-
ture. In the LHC, both betatron and momentum collimation
are needed.

For collidingbeams, beam-beam induced non-linearities,
combined with residual magnetic imperfections of the
quadrupoles in the experimental insertions, limit the dy-
namic aperture to Adyn � 6–10 in units of ��, the rms
beam radius. The flux of protons diffusing outside this am-
plitude is estimated to be _n � 3 � 109 p s�1 [1]. Most
of these protons might touch the vacuum chamber at a sin-
gle aperture limit, with the energy release spread longitudi-
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nally by the hadronic shower process over lshower � 1 m.
In these conditions the local quench level is reached with
_nq � 106 p s�1m�1[2]. At ramping, rf-untrapped protons
are not accelerated and migrate slowly towards the vacuum
chamber. The flash of losses lasts �t � 1 s, a time scale
fixing the transient quench level at �nq = 2:5 1010 p m�1.
For a stored intensity Np = 3 1014 protons with 5% off-
bucket, the intensity of the flash is �n = 1:5 1013 p [2].

A very efficient collimation system is therefore needed
in both cases. It has been shown [2] that two–stage colli-
mation is adequate and offers a good safety margin.

2 REQUIREMENTS FOR THE OPTICS

2.1 Betatron collimation

With an approximately circular normalized aperture, the
primary halo must be intercepted by three primary jaws
forming an octagonal primary aperture of inscribed radius
n1. It is shown in [3] that the secondary halo can be cut
close to the secondary collimator aperture Asec = n2 if,
for each primary, four secondary jaws are installed at well-
defined correlated betatronic phase advances �x and �y rel-
ative to the primary jaws. The long straight sections of
LHC offer a phase advance ��x;y � 2�, which proved
to be insufficient to satisfy the ideal phase conditions for
the twelve secondary jaws. With the code DJ [4][5], var-
ious optics were studied, the present best result for a ra-
tio n2=n1 = 7=6 being Asec = 1:2n2 = 1:4n1. With
a ring aperture Aring = 10 (including tolerances, optical
errors and momentum spread) and using the safe condition
Asec < Aring, the allowed primary aperture is therefore
n1 � Aring=1:4 = 7:1, a value which is adequate at both
injection and collision beam energies.

2.2 Momentum collimation

In contrast to the betatron halo, which may drift away from
the beam in all transverse directions, momentum losses in a
ring with only horizontal dispersion are concentrated in the
horizontal plane. Off-bucket protons lost at ramping keep
their initial betatron amplitude [6] and are therefore con-
fined in the range of betatron amplitudes Ax;y � 2. It is
therefore sufficient to use a single horizontal primary colli-
mator, with its four associated secondary collimators. Their
phase advances relative to the primary jaw are given in Ta-
ble 1 [3]. With the largest momentum offset passing the
primary jaw �c = n1=�1 (where the normalized disper-
sion �1 = D1=

p
��), the secondaries limit the horizontal

betatron amplitude to �
p
n2
2
� n2

1
. In the arc of a ring,

the aperture limit for a particle with momentum offset is lo-
cated near horizontally focusing quadrupoles, where both
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�x andDx are at their maximum. The largest horizontal ex-
cursions of the secondary halo must fit the arc aperture, i.e.
Ax;� +D�p = Nx;arc .

The smaller number of correlated phase advances for the
secondary collimators makes solution easier than in the be-
tatronic case, but a large normalized dispersion�1 (or �1 =
D1=

p
�) is needed at the primary collimator. The value of

�1 depends mainly on the ring aperture Aring(�p = 0)and
on the maximum dispersion �arc. We use [3]

�1(n1) =
n1�arc

Aring(�p = 0)� (n2
2
� n2

1
)1=2

: (1)

In LHC, with Aring(�p = 0) = 12, �arc = 0:2 m1=2 (with
optical errors) and n1 = 7, �1 = 0:19 m1=2 is needed
[7]. The geometry of the dispersion suppressor connect-
ing the arcs and the straight section is fixed by the exist-
ing tunnel and therefore offers little flexibility for altering
the dispersion function in the insertion, which is suppressed
for the nominal tune. The combination of dispersion and
phase constraints therefore requires a lot of flexibility in the
straight section itself where the quadrupoles can be located
with more freedom.

Table 1: Secondary collimator locations �x and �y relative to
the horizontal primary jaw of the momentum cleaning insertion
and their X–Y azimuthal orientations �Jaw. The angle � is the
scattering angle (projected on to theXY plane) for which the sec-
ondary does the most efficient cut; �0 = arccos(n1=n2).

� �x �y �Jaw
0 �o - 0
� � � �o - 0
�=2 � 3�=2 �o
��=2 � 3�=2 -�o
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Figure 1: The phase advances along the momentum cleaning in-
sertion relative to the location of the primary collimator. The three
vertical marks indicate the optimum phase advances of Table 1.

3 COLLIMATION INSERTION
LATTICES

So that the two beams in the LHC experience exactly the
same sequence of focusing fields in a FODO lattice com-
posed of twin-aperture quadrupoles, these are arranged left-
right (L-R) antisymmetrically about the midpoint of each
insertion. Thus the six straight-section quadrupoles QiL,
QiR (i=1,2,3 - see Fig. 2 (top)) nominally have gradients
KL

i = �KR
i (these i values differ from the official LHC
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Figure 2: Momentum cleaning insertion lattice. Top: straight
section layout. Bottom: beta functions and normalized dispersion.

ones). This condition was found too restrictive for both be-
tatron and momentum collimation, and so new optics have
been devised for the cleaning insertions whose basic fea-
ture is to give the quadrupoles an increased left-right sym-
metric component (KL

i +KR
i )=2. Other changes from the

optics reported in [8] include replacement of the strongest
warm quadrupoles Q3L and R by cold quadrupole groups,
and repositioningof the separation magnets and the primary
jaws to a new location between Q3L and Q2L. The latter
allows neutral and low-momentum charged particles to be
removed from the beam axis more efficiently.

3.1 Momentum collimation

The advantages of the new optics over an exactly antisym-
metric setting are that they allow: (1) lower over-all fo-
cusing strengths, both for the straight section and disper-
sion suppressor quadrupoles, and (2) a higher normalized
dispersion peak at the primary collimator, �x=0.19-0.22
(Fig. 2, bottom), as momentum collimation requires. The
suggested explanation for this is that with antisymmetry
broken, the Twiss function values at the symmetry point can
be set further away from the exact antisymmetry condition
��Lx;y = ��Ry;x, ��Lx;y = ���Ry;x (this condition was never
forced as a constraint). With KL

i = �KR
i (i=1,2,3), the

best result for the normalized dispersion was �x = 0:16 [8].
The four quadrupoles QiL and QiR (i=1,2) are in fact

each composed of 6 warm quadrupole modules 3 m long,
based on the “two channels in one bore” design concept
[1]. Normally, these modules are wired so that the fields
felt by the two beams are exactly reversed, one seeing an
F quadrupole, and the other a D (as assumed for the anti-
symmetric lattice described above). Small deviations from
equal powering of the two channels are possible, but are
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Table 2: Quadrupole gradients (as % of maximum allowed) and
normalized dispersion at the primary collimator for the momen-
tum cleaning insertion matched to four arc cell tunes

�a:cellx .2515 .2649 .28 .24
�a:celly .2401 .2377 .24 .20

KA
1

81 84 84 83
KS

1
54 49 50 57

KA
2

-88 -86 -86 86
KS

2
70 46 62 61

KL
3

80 83 -74 -75
KR

3
-74 -75 83 81

KL
i 73 -17 55 39

for left 83 66 43 96
dispersion 45 38 71 25
suppressor 11 10 -5.5 21

and -67 -81 -80 -1
2 arc trim -25 -11 -29 8

quadrupoles -14 -76 -63 -92
KR

i -75 -93 90 -95
for right 68 -74 -82 84

dispersion -74 -67 -51 -62
suppressor 53 -47 12 -13

and -7 20 3.5 20
2 arc trim 74 15 52 9

quadrupoles 4 -58 12 -23

�x at prim. [m1=2] .2 .18 .194 .194
d�x=d�x [m1=2] -.012 -.042 -.039 -.010

limited to 10� 15%, for reasons of field quality.
To achieve larger j(KL

i +KR
i )=K

R
i j (� 30% is needed),

while preserving identical straight-section optics for the
two beams and also good field quality in the warm mod-
ules, a second kind of module is introduced, wired so that
each beam sees the same field, both channels acting as F
quadrupoles. These new “symmetric” modules (solid black
in Fig. 2) are positioned near the middle of each quadrupole
assembly, where they are most effective.

3.2 Matching and Flexibility

The cleaning insertions were matched to the arcs using
MAD [9] with a total of 21 independent variables: 18
quadrupole strengths (2 KS

i for the symmetric modules, 2
KA

i for the antisymmetric ones, 2 for the cold Q3L and
R, and 12 for the dispersion suppressor (DS) trims) plus
the 3 positions of the straight-section quadrupoles. The
most important constraint was the need for a maximum flat-
topped dispersion peak at the primary collimator. Table 2
shows the quadrupole strengths needed to match the mo-
mentum cleaning insertion to the arcs, while optimizing the
normalized dispersion �x and its derivative d�x=d�x =
(�xDx + �xD

0

x)=
p
�x. Four cases are shown, for differ-

ent tunes of the arc cells: the first column is for the nomi-
nal tune, while the other three assure cancellation of various
nonlinear resonance driving terms. The tune advances for
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Figure 3: Betatron cleaning insertion lattice.

the nominal case are shown on Figure 1. For all four cases
the quadrupole strengths are within limits, �x is sufficiently
high and jd�x=d�xj is sufficiently small.

3.3 Betatron collimation

The betatron cleaning section (Figure 3) has in general pre-
served the optics described in [5]. As for momentum clean-
ing, symmetrically powered quadrupole modules help to in-
crease flexibility and reduce quadrupole strengths.

4 CONCLUSIONS

By using the two-in-one warm quadrupoles of the colli-
mation insertions in a flexible way, we have formulated
a two-stage momentum cleaning insertion which satisfies
the LHC machine requirements and which is also, to our
knowledge, the first fully worked out design for any ma-
chine.
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