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Abstract

In report the radial-phase motion of electrons in a storage
ring is investigated. The expression for Hamiltonian,
connecting amplitudes of two modes of oscillations is
received in view of nonlinear magnetic fields of the third
order. Received Hamiltonian has a stationary point of a
type "limiting cycle", which in coordinate space defines
an equilibrium orbit. The existence "of a limiting cycle"
allows to carry out multiturn injection of electron beam
with final phase volume in a storage ring. The conditions
of realization of multiturn injection are received.
The results of researches can be used and for stores of
particles with large weight.

1  INTRODUCTION
Much attention (see, for example, [1-2]) were given to
the study of a problem of a  multiturn injection in storage
rings. Researches of the particle injection in systems with
stable motion round an equilibrium orbit is carried out in
most cases. In the condition of a steady motion about
closed orbit the "reflexive"  Poincare theorem  [3-4] is
fulfilled which hampers a realization of multiturn
injection of a charged particles beam.
In the this report the multiturn injection in a storage ring,
in which there is no stable motion about closed orbit
during injection, is investigated. In this case in the space
of dynamic variables there can be a stationary point with
the type of a "limiting cycle". A closed orbit becomes a
limiting set for other trajectory. Particles can be injected
in a storage ring along this trajectory unlimitedly long,
and at small deviations from it - quite long. The "limit
cycle" in a storage ring carry out with the help of
impulse sextupole and octupole magnets. After
realization of the injection the impulse elements switch
off.
We obtained expressions for a Hamiltonian of a set of
equations describing motion  of electrons in a horizontal
plane of a storage ring taking into account nonlinear
magnetic fields. The task was solved in the first
approximation by the Krylov-Bogolyubov method [5].
At deriving  the short equations for guadrates of an
oscillation amplitudes the representation of solutions in
the Floquet form is used. The oscillations were not
divided into fast "betatron" and slow "synchrotron"
oscillations, and it allowed to define a Hamiltonian
connecting amplitudes of these modes of oscillations.

2  THE EQUATIONS OF MOTION AND
THEIR SOLUTION

The differential equations of motion of a charged particle
in a horizontal plane of a  storage ring look like [6]:
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where
x1 = dx2/dθ,
x2 - a deviation of an electron from equilibrium orbit,
x3 - a relative deviation of an energy from an equilibrium
value,
x4 - a deviation of a phase of oscillations from an
equilibrium value,
θ - azimuth coordinate.
Matrix (A) describe effect of electromagnetic fiels of
storage ring in linear approximation without taken into
account radiation A(θ+θi) =  A(θ),
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where
e - charge of an electron,
c - velocity of a light,
p0 - impulse of an equilibrium orbit,
K0 = 2π/Π,
Π - perimeter of equilibrium orbit,
θi – period,
Hz – axial component of a magnetic field.
In the equation (1) the most important nonlinear terms up
to the 3d order inclusive are left. For the solution of this
equation the method of average of Krylov-Bogolyubov
[5] is applied, using representation of a solution of the
homogeneous equation (1) (F1=0) in the Floquet form:
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where fl

(1), fl
(2) ( l = 1,2,3,4) periodic Floquet functions,

C1,C2 - constants.
In case of a piecewise constant dependence of the
elements of a matrix (A) from ϑ, Floquet functions fl

(1),
fl

(2) (l = 1,2,3,4) and the magnitudes of Floquet indexes
ψ1, ψ2 can be calculated.
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Assuming that C1 and C2 are slowly varying functions of
ϑ and substituting (2) in (1) and after the averaging it is
possible to obtain a short differential equations for
quadrates of an oscillation amplitude I1 = C1

 2 and I2 =
C2 
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At a normalization of the Floquet function  the value of a
wronskian ∆ is put equal to "-4":
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∆1, ∆2 - cofactors of a matrix ∆. ∆1 - first column and first
line,  ∆2- third column and first line. At an averaging it
was supposed  that ψ1 ≠ ψ2, ψ1 ≠ K, ψ2 = K,  and also that
none of the resonance conditions is
fulfilled: ,...)2,1,0(,,,,21 ±±=≠+ qkjnqjn ψψ .
It is possible to show, that:
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In consequence the expression (5), the equations (3) has
the following Hamiltonian:
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where I1(0) and I2(0) - initial values of quadrates of
amplitudes.
The connection between I1 and I2 is stipulated by an
unresonance interaction of azimuth harmonics of
sextupole and octupole components of a magnetic field
of a storage ring with modulation of oscillation
amplitudes of a particle in a periodic lattice of a storage
ring.
I1(0) and I2(0) are expressed through initial values xl and
value of Floquet functions fl

(1), fl
(2) on an azimuth of

injection by the following formulas:

Φ
=

Φ
=

+=

∑∑
==

4

1
2

1

4

1
1

1

2
1

2
11

,

)0(

l
ll

l
ll x

b

x

a

baI

ϕϕ (7)

Φ
=

Φ
=

+=

∑∑
==

4

1
4

2

4

1
3

2

2
2

2
22

,

)0(

l
ll

l
ll x

b

x

a

baI

ϕϕ (8)

where Φ - determinant of a matrix (Φ)
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ϕl1 - cofactors of 1st column of a matrix (Φ).

The line above xl , ( )1
lxf  and ( )2

lxf  stands for initial

values of coordinates and Floquet functions on an
azimuth of injection.
At H=0 equations (6) have two solutions:
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is taken by a particle moving about equilibrium orbit
corresponds to this solution.
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If the condition (9) is fulfilled, and further at a
modification  of ϑ will be fulfilled the following relation:
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Substituting (5) and (10) in (3) we shall receive:
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Integrating (11a) and (11b) we shall receive:
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It is made out from the relation (6) that for H=0 it is
necessary that the magnitudes (L1

S + L1

Q) and (M2

S + M2

Q)
were should be with identical signs. And it is clear from
(12) that for I1 and I2 being aimed to zero at θ→∞ it is
necessary that the conditions (L1

S + L1

Q) >0 and (M2

S +
M2

Q) >0 were fulfilled.
On account of relations (12) and (11a) and (11b) at (L1

S +
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Q)>0 and (M2
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Q) >0 at θ→∞ the particles, initial
conditions of which satisfy the condition (10), will be
indefinitely long  coming close to a fixed point with
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equilibrium orbit. Thus, for a realisation of multiturn
injection the realisation of two conditions (L1
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Q) >0,
(M2
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Q) >0 and H=0 is necessary and sufficient.
In common case:
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Where I1 is a solution of the differential equation:
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For short here and below  it is necessary: (L1
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e (M2
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Assuming 0,0, 2 >>−= MHHH and by integrate (14)
we shall receive expressions:

θ=




−+




−−
−

3

1
min1

3

1
min1

1

)0(11

)0(11
ln

1

3

2

I
I

I
I

L
, (15)

where 
3

1

2
1

2
min1

4






=

H

MH
I - minimum value, which will

take I1  during the injection. At I1=I 1min dI1/dθ = 0  and
after reaching this value the increase of  I1 will begin.
From (15) follows, that number of turns during which it
is possible to carry out the injection is equal to:
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Assuming I1min/I1(0) <<1  we shall receive the
approximate formula for an estimation of number of
turns - n.
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From (17) follows, that less is L1, the more turns it is
possible to inject, but L1 should be great enough to
ensure the separation of a beam from a septum for one
turn. Integrating (14) and assuming θ=2π we shall
receive:
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Substituting L1 from (18) to  (17) we shall receive:
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Magnitude of a phase volume of a beam in space of xl,
which can be injected in a storage ring during n turns
(17) is equal to the volume limited by the surface, the
parameters of which can be obtained at a substitution in
the equation (6) expressions for I1(0) and I2(0) from (7)
and (8).

3  CONCLUSION
The method of an average applied in the work for a
research of radial-phase motion of electrons in a storage
ring, is approximate. The obtained formulas will be
describe dynamics of particles well at realization of the
condition 2π/θî >>1.
For a realization of conditions for existence of "limit
cycle" it is necessary to select a storage system with
close values ψ1 and ψ2. In common case sextupole and
octupole fields result to the mutual transmission of an
energy of synchrotron  and betatron oscillations.
Multiturn injection can be used for the injection of heavy
particles.
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