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Abstract the machine radiusgy is the classical particle radius,is a

A fast and accurate hybrid (analytical-numerical) techfﬁslr'lr:)gmlﬁ]g?tt:rsgsgigy’ the maximum pipe diameterjs
nique for computing the normal mode tune-shifts in
rounded-rectangular (stadium) pipes is introduced based on 8.y = Ouylr—r ,incoherent regime
Galerkin method together with a smart representation of ' T 3)
Poisson’s equation Green’s function in a rectangular do- | 5 = 0.y + Oay.yn)|er. . cOhErent regime
main. Comparison with standard finite-elements and fi- ’ ’
nite difference methods shows that our method is faster and 2 THE METHOD
more accurate, requiring no numerical differentiation.
For computing the image potenti@(“™ in rounded rect-
1 THE PROBLEM angular geometries, it is convenient to use the rectangular-

domain Green'’s functiopy (henceforth RDGF), viz. :
Many beam-pipe cross-section geometries of potential in-

terest for accelerators, including the stadium-shaped one ™) (1 1) = B(r,13) — Ago(r, 1),

recently proposed for LHC [3], differ from the rectangle

only by the rounding of corners, or the substitution of

straight sides with circular arcs. Computing the related be-2 (1) = lZ/UgR 1l )poy (i)l + 9R(1,10) |5 (4)

tatron tune-shifts, resulting from collective (space-charge

and image) effects is a key problem to prevent resonaltherego is the free-space Green’s function, the unknown

betatron excitations leading to potentially harmful bearf: aré obviously nonzeronly on the rounded portion of

instabilities. The normal mode coherent and incohdrenf'So. i-€., the arcs;,, andly, is the arc-length omr,.

tune-shifts can be written in terms of the normal mode We seek a hybrid (analytical-numerical) solution of eq.

Laslett coefficients as follows [2]: (4) by using Galerkin (moments) method [6], whereby we
first expand the unknowp:

NRTO

Av=——F—"—c¢ (1)
mvByoL?
00 P (k) = Zb (5)
wheré:
i ; into a suitable (finite) set of basis functions
12 [ 6,0,80m)4 6,0,80m n
€1,2 :H{_ L 5 Ly + {w(),...,w¥ (1)}, defined on oy, where
{b(k) . ,bg\',“)}, are N-dimensional vectors of unknown
5.0.dEm_ 5 5 @lim) 2 coefficients, and then enforce the (Dirichlet) boundary
+ ( vy 5 T > + conditions on the aras;,, whence:
, q1/2 / (g, )w® (1) dly, = 0,
+ 5xa$cp<1m)5yayq>(“”>} } : ) or s

) =12,....N; k=1,2,..., P,
(™) s the image-potential produced in the beam pipe by n=12....Nik=12..5h ©)

a linear charge density going through the beam center ofthus obtaining a block-matrix linear system:
charger;, N is the number of particles in the beai,is

[L] b =c. 7)
*Work supported in part by INFN.
"' On leave of absence from KEK, Tsukuba, JPN. The matrix[L] is readily shown to be symmetrical, positive

 &-mall stefania@kekvax.ac.jp definite and hence non-singular. The components,af
Theincoherentand coherentregimes correspond to # r, = Teq dL licit] by (5
andr =r, #r, respectlvely,_e denoting the beam center of charge an are explicitly given by (5),
equilibrium posmon [2].
2The pipe-shape independent space-charge contribution to the tune- (k) _ (k)
shift is neglected here for simplicity. G = o wi ()9 (U, ),
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i=1,2,...,N; k=1,2,...,P, (8) intofewersingular integrals ifiL.]; i) no polygonal approx-

imation of the arcs is implied, resulting into fewer functions

)

and: being needed for a given accuracy.
Letting P the number of arcs in the rounded portion of
P9y  _ (») (@)
(L Jii —/U /U 9(lp, lg)w;™ (lp)w;" (lg) dlp dlg, 05y, the system (7) has rank P. Computing the ma-
v trix elements requires evaluating up RV (PN — 1)/2
i,j=1,2,...,N, p,q=1,2,...,P, (9) double-integra® These latter can be either evaluated nu-

i ) i ) merically using standard routines appropriate for regular
where the upper indexes identify the block sub-matrix, anfsli] and singular integrands [8], or analytically [4]. Ma-

the lower ones the element in each sub-matrix. trix inversion for solving (7) is not the most demanding
Us_ln_g eq.s (2)-(5), once (7) has been s_olved, the L"’_‘Sletgsk, in view of the typically small){ P ~ 20 ) L matrix
coefficients can be computedthoutresorting to numeri- ;e 1 ai| numerical simulations below we truncated (10)

cal differentiation. This makes the proposed method defgt|m| < 3and tookA¢ = /10, corresponding to a matrix
nitely more accurate than both finite-differences and finiteg; ;o v p — 9. '

elements.

4 NUMERICAL RESULTS
AND CONCLUSIONS

) ) The circular pipe, for which the tune-shifts are known ex-
Fast and accurate numerical solution of (7) follows from gy, is the hardest conceivable test case for the proposed
skillful choice of the RDGF representation in (4) and thenethod (largest departure from rectangular geometry). It is
basis functions in (5). seen from Fig. 2 that the obtained accuracy is very good.
A rapidly converging series expansion of the RDGF [5]  oyr method was subsequently applied [4] to a number of
» which explicitly contains the (logarithmic) singular termgifferent proposed geometries relevant to LHC [3].

3 IMPLEMENTATION AND
COMPUTATIONAL BUDGET

is 3: :
As an example the contour-level plots for the incoherent
oo TO(r, v, )T (r, 7, and coherent (both normal modes) Laslett coefficients for a
=— log == =bm A0 =h 10) stadium-shaped pipe, sketched in Fig. 3, are shown in Fig.s
gR(£7 Eb) m;oo og TT%O(f, fb)Trrlnl (f, fb) i ( ) 4-6. p p p g g

As a conclusion, we found that the above hybrid ap-
proach is comparatively faster and more accurate than
available finite-element and/or finite-difference techniques.

where:
T3i(r,1,) = 1+ exp [ =2 ly—(=)"pp+2bm| = | +

5 REFERENCES

™ ™
—2exp |ly—(=)Pyp+2bm —}cos[— r— () }, 11
Plly=(=)"ys ‘a a (= ()%a) (11) [1] L.J. Laslett, Proc. of the 1963 Summer Study BNL 7534.
a, b being the rectangle side lengths. [2] S. Petracca, Particle Acced8, 81, 1994.
A convenient set of (partially overlapping) piece-wise [3] The LHC study group, CERN/AC/95-05 (LHC), 1995.

. . ) . ) ~~ [4] V. Galdi, S. Petracca, I. Pinto, Particle Accel., PA(R)-85,
parabolicsubdomainbasis functions, can be defined in [4] 1999, in print. R

terms of the local angles (we drop the suffix: for sim-  [5] M. Bressan and G. Conciauro, Alta Frequent4,, 188,

plicity) as follows: 1983, ibidemLVIl , 217, 1988.
[6] R.F. Harrington,Field Computation by Moment Methqds
AP? — (¢ — ¢i)? McMillan, New York, 1961.
wi(¢) = Ag? ’ [7] W.H. Press et al.Numerical Recipes, the Art of Scientific
Computing 2nd Ed., Cambridge Un. Press, 1992.
bi — APp(1 — 6;1) < ¢ < ¢i + AP(1 — Gin), [8] SLATEC Pub. Dom. Math. Lib, NETLIB,

http://www.netlib.org

i=1,2,...,N, (12)

9

whereA¢ is the angular discretization step (assumed the
same for all arcs)¢ is related to the local arc-lengthby

Il = R¢, R being the local curvature radius, afid is the
Kronecker symbdl The relevant local coordinate systems
are sketched in Fig. 1. Note thd}:the choice ofsubdo-
main basis functions, rather thdall-domainones, results

31t is easily recognized that the (logarithmic) singularityef appears
in the 740 term.

4Fori = 1,N, eq. (12) yields the correct behaviour at the points
where the circular arcs join the straight portion®6f, whereps can be 5Due to geometrical (specular) symmetries, the effective number of
different from zero, but its derivative should vanish. elements to compute is usually smaller.
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Fig. 1 - Local coordinate system relevant to Fig. 2 - Circular pipe. Errors on Laslett coefficients vs.
eg. (12). scaled radial dlstanc%,:g[(x_alz)z + (y—alz)z]m'
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Fig. 3 - Stadium-shaped pipe (a=1, b=0.7). Fig. 4 - Stadium-shaped pipe. Incoherent

Laslett coefficients (both normal modes).
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Fig. 5 - Stadium-shaped pipe. Coherent Laslett  Fig. 6 - Stadium-shaped pipe. Coherent Laslett
coefficient (£' normal mode). coefficient (29 normal mode).
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