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Abstract

A fast and accurate hybrid (analytical-numerical) tech-
nique for computing the normal mode tune-shifts in
rounded-rectangular (stadium) pipes is introduced based on
Galerkin method together with a smart representation of
Poisson’s equation Green’s function in a rectangular do-
main. Comparison with standard finite-elements and fi-
nite difference methods shows that our method is faster and
more accurate, requiring no numerical differentiation.

1 THE PROBLEM

Many beam-pipe cross-section geometries of potential in-
terest for accelerators, including the stadium-shaped one
recently proposed for LHC [3], differ from the rectangle
only by the rounding of corners, or the substitution of
straight sides with circular arcs. Computing the related be-
tatron tune-shifts, resulting from collective (space-charge
and image) effects is a key problem to prevent resonant
betatron excitations leading to potentially harmful beam
instabilities. The normal mode coherent and incoherent1

tune-shifts can be written in terms of the normal mode
Laslett coefficientsε as follows [2]:

∆ν = − NRr0

πνβ2
0γ0L2

ε, (1)

where2:

ε1,2 =
L2

4Λ

{
−δx∂xΦ(im)+ δy∂yΦ(im)

2
+

±
[(

δy∂yΦ(im)− δx∂xΦ(im)

2

)2

+

+ δx∂xΦ(im)δy∂yΦ(im)
]1/2

}
, (2)

Φ(im) is the image-potential produced in the beam pipe by
a linear charge densityΛ going through the beam center of
chargerb, N is the number of particles in the beam,R is
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1The incoherentandcoherentregimes correspond tor 6= rb = req

andr = rb 6= req , respectively,req denoting the beam center of charge
equilibrium position [2].

2The pipe-shape independent space-charge contribution to the tune-
shift is neglected here for simplicity.

the machine radius,r0 is the classical particle radius,L is a
scaling length (usually, the maximum pipe diameter),ν is
the nominal tune, and


δx,y = ∂x,y|r=r

b
, incoherent regime,

δx,y = (∂x,y + ∂xb,yb
)|r=r

b
, coherent regime.

(3)

2 THE METHOD

For computing the image potentialΦ(im) in rounded rect-
angular geometries, it is convenient to use the rectangular-
domain Green’s functiongR (henceforth RDGF), viz. :

Φ(im)(r, rb) = Φ(r, rb) − Λg0(r, rb),

Φ(r, rb)=Λ

[∑
k

∫
σk

gR(r, lk)ρσk
(lk)dlk+gR(r, rb)

]
, (4)

whereg0 is the free-space Green’s function, the unknown
ρσl

are obviously nonzeroonly on the rounded portion of
∂S0, i.e., the arcsσk, andlk is the arc-length onσk.

We seek a hybrid (analytical-numerical) solution of eq.
(4) by using Galerkin (moments) method [6], whereby we
first expand the unknownρs:

ρσk
(lk) =

N∑
n=1

b(k)
n w(k)

n (lk), (5)

into a suitable (finite) set of basis functions
{w(k)

1 (lk), . . . , w(k)
N (lk)}, defined on σk, where

{b(k)
1 , ..., b

(k)
N }, are N -dimensional vectors of unknown

coefficients, and then enforce the (Dirichlet) boundary
conditions on the arcsσk, whence:∫

σk

Φ(lk, rb)w
(k)
n (lk)dlk = 0,

n = 1, 2, . . . , N ; k = 1, 2, . . . , P, (6)

thus obtaining a block-matrix linear system:

[L] b = c. (7)

The matrix[L] is readily shown to be symmetrical, positive
definite and hence non-singular. The components ofb, c
andL are explicitly given by (5),

c
(k)
i = −

∫
σk

w
(k)
i (lk)g(lk, rb)dlk,
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i = 1, 2, . . . , N ; k = 1, 2, . . . , P, (8)

and:

[L(p,q)
M ]ij =

∫
σp

∫
σq

g(lp, lq)w
(p)
i (lp)w

(q)
j (lq) dlp dlq,

i, j=1, 2, . . . , N, p, q=1, 2, . . . , P, (9)

where the upper indexes identify the block sub-matrix, and
the lower ones the element in each sub-matrix.

Using eq.s (2)-(5), once (7) has been solved, the Laslett
coefficients can be computedwithout resorting to numeri-
cal differentiation. This makes the proposed method defi-
nitely more accurate than both finite-differences and finite-
elements.

3 IMPLEMENTATION AND
COMPUTATIONAL BUDGET

Fast and accurate numerical solution of (7) follows from a
skillful choice of the RDGF representation in (4) and the
basis functions in (5).

A rapidly converging series expansion of the RDGF [5]
, which explicitly contains the (logarithmic) singular term
is 3:

gR(r, rb) = −
∞∑

m=−∞
log

T 10
m (r, rb)T

01
m (r, rb)

T 00
m (r, rb)T 11

m (r, rb)
, (10)

where:

T pq
m (r, rb) = 1 + exp

[
−2 |y−(−)pyb+2bm| π

a

]
+

−2 exp
[
|y−(−)pyb+2bm|π

a

]
cos

[π

a
(x−(−)qxb)

]
, (11)

a, b being the rectangle side lengths.
A convenient set of (partially overlapping) piece-wise

parabolicsubdomainbasis functions, can be defined in
terms of the local anglesφ (we drop the suffixk for sim-
plicity) as follows:

wi(φ) =
∆φ2 − (φ − φi)2

∆φ2
,

φi − ∆φ(1 − δi1) ≤ φ < φi + ∆φ(1 − δiN ),

i = 1, 2, . . . , N, (12)

where∆φ is the angular discretization step (assumed the
same for all arcs),φ is related to the local arc-lengthl by
l = Rφ, R being the local curvature radius, andδrs is the
Kronecker symbol4. The relevant local coordinate systems
are sketched in Fig. 1. Note that:i) the choice ofsubdo-
mainbasis functions, rather thanfull-domainones, results

3It is easily recognized that the (logarithmic) singularity ofgR appears
in theT 10

0 term.
4For i = 1, N , eq. (12) yields the correct behaviour at the points

where the circular arcs join the straight portions of∂S0, whereρs can be
different from zero, but its derivative should vanish.

into fewersingular integrals in[L]; ii) no polygonal approx-
imation of the arcs is implied, resulting into fewer functions
being needed for a given accuracy.

Letting P the number of arcs in the rounded portion of
∂S0, the system (7) has rankNP . Computing the ma-
trix elements requires evaluating up toPN(PN − 1)/2
double-integrals5. These latter can be either evaluated nu-
merically using standard routines appropriate for regular
[7] and singular integrands [8], or analytically [4]. Ma-
trix inversion for solving (7) is not the most demanding
task, in view of the typically small (NP ≈ 20 ) L matrix
size. In all numerical simulations below we truncated (10)
at |m| ≤ 3 and took∆φ = π/10, corresponding to a matrix
sizeNP = 20.

4 NUMERICAL RESULTS
AND CONCLUSIONS

The circular pipe, for which the tune-shifts are known ex-
actly, is the hardest conceivable test case for the proposed
method (largest departure from rectangular geometry). It is
seen from Fig. 2 that the obtained accuracy is very good.

Our method was subsequently applied [4] to a number of
different proposed geometries relevant to LHC [3].

As an example the contour-level plots for the incoherent
and coherent (both normal modes) Laslett coefficients for a
stadium-shaped pipe, sketched in Fig. 3, are shown in Fig.s
4-6.

As a conclusion, we found that the above hybrid ap-
proach is comparatively faster and more accurate than
available finite-element and/or finite-difference techniques.
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Fig. 1 - Local coordinate system relevant to
eq. (12).
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Fig. 2 - Circular pipe. Errors on Laslett coefficients vs.
scaled radial distance, ( ) ( )[ ] 2/122 2/2/
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Fig. 3 - Stadium-shaped pipe (a=1, b=0.7). Fig. 4 - Stadium-shaped pipe. Incoherent
Laslett coefficients (both normal modes).
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Fig. 5 - Stadium-shaped pipe. Coherent Laslett
coefficient (1st normal mode).

Fig. 6 - Stadium-shaped pipe. Coherent Laslett
coefficient (2nd normal mode).
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