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Abstract

We studied the electrostatic fields due to the
longitudinal and transverse perturbations of a charged
particle beam with a uniform distribution propagating
inside an rf-shielding cage constructed from evenly-
spaced conducting wires. The beam and the rf-cage
are surrounded by a concentric conducting beam pipe.
Simple formulae are derived for estimating the space-
charge impedances. Numerical examples are given.

1 INTRODUCTION

An rf-shielding cage, or an rf-cage, used in an
accelerator or storage ring is a cage-like structure
made of conducting wires stretched in parallel to the
direction of the circulating charged particle beam.[1]
The conducting wires on the cage are arranged to
surround the beam to create an electromagnetically
shielded environment for the beam. This kind or the
similar kinds of devices together with ceramic beam
pipes have been implemented[1] and planned[2-4], or
is being planned[5] in some high-intensity rapid cycling
proton synchrotrons. There are two reasons for using
the rf-cage instead of solid beam pipe. The first reason
is to avoid excess eddy current that may be induced
on the beam pipe by the fast-changing magnetic field.
The second reason is that it is easier to vary the cross-
section of an rf-cage to reduce the coupling impedance.

Although an rf-cage has been put in service for
many years,[1] a serious study of the electromagnetic
field of a charged particle beam propagating in an rf-
cage has never been documented until recently.[6,7] In
Refs. 6 and 7, a rigorous formalism was established to
investigate the electrostatic field of a charged particle
beam with a uniform distribution inside an rf-shielding
cage constructed from evenly-spaced conducting wires.
The purpose of the this work is to extend the
previous study to include the effect of an external
solid beam pipe. Simple formulae will be derived for
the longitudinal and transverse coupling impedances
in the long wavelength regime. Numerical examples
will be given.

2 THE FIELD AND IMPEDANCE

The system considered here is shown in Fig. 1. A
beam having a circular cross-section of radius rb and
a uniform charge distribution is propagating inside of
an rf-cage composed of N conducting wires extended
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in the direction parallel to the beam. The beam and
the rf-cage are surrounded by a conducting beam pipe
with radius rt. For simplicity, we shall limit our
discussion to the geometry in which wires are evenly
distributed over a circle; the surrounding pipe and the
rf-cage is positioned concentric with the beam. The
radius of the rf-cage, measured from the center of the
cage to the centers of wires, is rc. We assume that
the pipe and wires are electrically grounded and all
wires have the same circular cross-section of radius ρw.
The discussions here will be restricted to the regime
ρw ¿ rc and N À 1.

Fig. 1. Cross-sectional view of a beam inside an rf-
cage and beam pipe. rt, rc, and rb are the radii of the
beam pipe, the rf-cage, and the beam, respectively. ∆
is the angle subtended by two adjacent wires, and ρw
is the radius of a wire.

Although one can estimate the impedance in
the long wavelength regime by solving the two-
dimensional electrostatic field using various techniques
like the image method etc., we elect to use the three-
dimensional treatment here. This approach allows one
to examine the frequency dependence of the impedance
in the low frequency domain, if needed.

We choose a cylindrical coordinate system
(r, θ, z) such that the z-axis coincides with the central
axis of the beam, and we shall call it the “global
coordinate system”. In order to conveniently describe
the electric field near an individual wire, we shall also
use another cylindrical coordinate system, be referred
to as the “local coordinate system” in the following,
(ρ, ψ, z) in which the z-axis coincides with the central
axis of a wire as shown in Fig. 2.
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Fig. 2. The local and the global coordinates adopted
in this study. The origins of the local and the global
coordinates are located at the center of beam and the
center of a wire, respectively.

We now consider the electrostatic potential due
to the charge-density perturbation that varies in the
z-direction according to eikz, where k is the wave-
number of the perturbation. The Poisson equation we
want to solve is

1
r

∂

∂r

(
r
∂Φ
∂r

)
+

1
r2
∂2Φ
∂θ2

+
∂2Φ
∂z2

=
{

0, if rt > r > rb,
−σeikz/εo, if r ≤ rb,

(1)
where σ is the volume charge density associated with
the perturbation, and εo is the permittivity of free
space. To solve Eq. (1) in the presence of wires,
we first solve the equation for no wire, i.e., for the
boundary condition of Φ = 0 at r = rt only. Then
we assume that in the region of rt ≥ r ≥ rc each
wire induces a field which has the following multipole
expansion in the local coordinate:

φw =
∞∑

n=−∞

[
AnKn(kρ) +BnIn(kρ)

]
einψeikz , (2)

where In(x) and Kn(x) are the nth order modified
Bessel functions of the first and the second kind,
respectively; An and Bn are the unknowns to be
determined. Applying the addition theorem of Bessel
functions[8], φw can also be expressed in the global
coordinate variables. Then applying the boundary
condition of φw = 0 at r = rt, one can solve
Bn in terms of An. Because of the symmetry
embodied in the system, one can study the field around
wires by considering the electric potential around
any individual wire. Thus, we call the wire under
consideration the 0th wire and number all others by
their relative locations with respect to the 0th wire.
On the surface of each wire, the potential due to
the induced charge should cancel that due to the
beam plus that contributed by all other wires. This
requirement leads to a complicated equation for An
which appears to have no closed-form solution. In

the regime krt ¿ 1, it is possible to find a solution
for An expressed in a power series of hn(kρw). If
the coupling among multipoles is neglected, the lowest
order solution is

An ≈ −b‖hn(kρw)
[
Kn(krc) − In(krc)

h0(krt)

]{
1 + (−1)n

× hn(kρw)
N−1∑
µ=1

e−inµ∆K0(kdµ) − hn(kρw)

×
∞∑

j=−∞

[
In+j(krc)

]2
hj(krt)

[
1 + (−1)n

N−1∑
µ=1

eijµ∆

]}−1

, (3)

where b‖ = (σrb/kεo)I1(krb), hn(x) = In(x)/Kn(x),
∆ = 2π/N is the angular separation between two
adjacent wires, and dµ is the distance between the
centers of the 0th and the µth wires.

Using the solution (3) and the addition theorem
of Bessel functions, one can derive the total electric
potential in the region of r ≤ rc. Then taking the
approximation by considering n = 0 (the monopole
solution) only, we find the total electric potential in
the region of r ≤ rb as

Φ =
σ

εok2

{
1 − krbI0(kr)

[
I1(krb)
h0(krt)

+K1(krb)
]}

eikz

+N
∞∑

p=−∞

∞∑
n=−∞

An

[
Kn+pN (krc) − (−1)n

× In+pN (krc)
hpN (krt)

]
IpN (kr)eipNθeikz . (4)

For N À 1 and krt ¿ 1, we can apply the small
argument expansions of Bessel functions to Eqs. (3)
and (4) to yield

Z‖ ≈ iLkZo
4βγ2

[
1 + 2 ln

( rt
rb

)
+ C‖

]
, (5)

where

C‖ ≈ −2N [ln(rt/rc)]2

N ln(rt/rc) − ln(πfw) + ln
[
1 − (rc/rt)2N

] , (6)

L is the length or the circumference of the machine,
Z0 = 377Ω, and the wire filling factor fw is defined
as the ratio between the angle subtended by a wire
in the global coordinate system θw, and ∆, i.e. fw =
θw/∆ ≈ Nρw/(πrc).Note that hn(krt) → ∞ when
rt → ∞. Thus, in the absence of the external beam
pipe Eqs. (5) and (6) reduce to the previous result.[7]

Next, we consider the electrostatic potential due
to a transverse perturbation in a beam. The model
of the perturbation to be studied here is a shell with
surface charge density varying according to eikz cos θ.
The Poisson equation is

1
r

∂

∂r

(
r
∂Φ
∂r

)
+

1
r2
∂2Φ
∂θ2

+
∂2Φ
∂z2

=
−σd̄
εo

δ(r−rb)eikz cos θ.

(7)
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We again start the analysis by solving the
Poisson equation in the absence of the rf-cage. Then
the field due to the induced charge on wires is
considered. In contrast to the case of longitudinal
perturbation, the system now is not axisymmetric.
Therefore, the multipole expansion coefficients of the
field due to the induced charges on each wire depend on
the angular location of the wire. Other than that, the
analysis procedures and the boundary conditions are
the same as in treating the longitudinal perturbation.

C ||

NUMBER OF WIRES,  N
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Fig. 3. A numerical example of C‖ as a function of
the total number of wires N . Where C‖ is calculated
using Eq. (6).
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Fig. 4. A numerical example of C⊥ as a function of
the total number of wires N . Where C⊥ is calculated
using Eq. (9).

After obtaining the approximate perturbed field
by retaining only the contribution from the monopoles
due to the wires, all the Bessel functions are expanded
to derive the following transverse impedance in the
long wavelength regime:

Z⊥ ≈ iLZo
2πβ2γ2

(
1
r2b

− 1 − C⊥

r2c

)
, (8)

where

C⊥ ≈ [
1 − (rc/rt)2

]{[
(rc/rt)2 + (rt/rc)2

]
ln

[
1−

(rc/rt)2N
] − 2 ln(πfw)

}{
N

[
1 − (rc/rt)2

] − 2 ln(πfw)

+
[
(rc/rt)2 + (rt/rc)2

]
ln

[
1 − (rc/rt)2N

]}−1

. (9)

When rt → ∞, Z⊥ reduces to the limits of no external
beam pipe obtained before.[7]

3 CONCLUSIONS

For a charged particle beam propagating inside of a
beam pipe and an rf-shielding cage made of evenly-
spaced conducting wires, the electrostatic fields due
to sinusoidal longitudinal and dipole-mode transverse
perturbations have been solved analytically for the
case that the cage and the wires all have circular
cross sections. It was assumed that the beam has
a uniform charge distribution and the unperturbed
system is azimuthally symmetric. We have derived
simple formulae for the coupling impedances in the
long wavelength regime. Numerical examples were
presented to show the shielding effects of the rf-cage.
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