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Abstract

In this paper, we present the particle dynamics in low-
energy travelling-wave linear accelerators, applying
analytical theory, based on Hamiltonian mechanics, and
numerical simulations, performed by commercially
available codes. The paper is an extension on earlier
work, presented at EPAC’98. Cylindrical co-ordinates are
used and solenoid magnetic fields are incorporated. The
Hamiltonian equations of motion are given and examples
of calculations are presented and compared to numerical
simulations, yielding excellent agreement between both
approaches.

1 INTRODUCTION
At the Eindhoven University of Technology, a
Hamiltonian theory of particle motion of accelerated
electrons in standing-wave RF structures has been
developed[1]. However, this theory was only valid in
principle under the assumption that the particle velocity
equals the phase velocity of the main accelerating wave.
This condition is not fulfilled in low-energy linear
accelerators. The present, adapted Hamiltonian theory, in
which also solenoidal magnetic fields are incorporated
does not have this restriction. The set of equations
obtained with this Hamiltonian theory is suitable for
particle motion calculation. Calculations using this set of
equations are compared to the results of a commercially
available particle tracking code, yielding excellent
agreement.

2 THE EQUATIONS OF MOTION
The vector potential in cilindrical co-ordinates
representing electromagnetic waves in the periodic part of
the linac is given by [2]:

(1)

in which      stands for       , an for the Fourier coefficients,
kn=kf+2πn/d with d the cell length and kf the phase shift
per cell,                  , Ez(z) the amplitude of the electric
field in the z-direction. Note that this amplitude is a

function of the longitudinal co-ordinate z. Aθ,j is the
vector potential of the static magnetic field j. This vector
potential of solenoid j, expanded up to third order in r,
reads:

(2)

with:

in which:

with µ0 the magnetic permeability in vacuum, I the
current through the solenoid, N the number of turns, L the
length and a the radius of the solenoid. z is defined at the
axis with respect to the center of the solenoid.
Relativistic motion is described by the Hamiltonian:

(3)

where c is the speed of light, Er the particle rest energy,
pr, pθ,, pz the canonic momenta in cylindrical co-ordinates
and Ar, Aθ, Az the components in cylindrical co-ordinates
of the vectorpotential, given by eq. 1. The new
Hamiltonian becomes K1 = -pz, -H and t form a new pair
of conjugated canonical variables. On this Hamiltonian K1

the following scaling transformations is performed:

(4)

in which Hi is the initial energy, yielding Hamiltonian K2

= -πz:

(5)

in which:

In eq. 5 ζ is transformed to ζ2=ζ-kfz/k (new variables are
indicated by higher numerical subscripts), by generating
function G0 = -hζ2-hkfz/k (h2 = h). Further the signs of h2

and ζ2 are changed in h3 and ζ3 by generating function
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G1 = h2ζ3. Now h3 is a positive quantity and kζ3 has the
meaning of phase. The final Hamiltonian Kf becomes (in
new co-ordinates, numerical subscripts are omitted):

(6)

in which the arguments of the components of the vector
potential (knz-ωt) in eq. 1 has been replaced by
(2πnz/d+kζ). The equations of scaled energy and phase
are:

(7)

in which:

The transversal equation of motion for the canonical
momentum reads:

(8)

This expression is inconvenient for practical use.
Furthermore, πr,can is not of interest but πr,kin, therefore the
differential equation for πr,kin will be derived in the
appendix and is given by:

(9)

The remaining transversal equations are:

(10)

It is seen that πr,kin is needed in the set of equations and not
πr,can. Furthermore, the expression dπr,kin/dz is much
simpler than the expression dπr,can/dz. With this set of
equations particle motion calculations can be performed.

The equations of motion for calculations without static
external solenoidal magnetic field are obtained by setting
Aθ equal to zero. Calculations without electromagnetic
field are obtained by setting εn(z) equal to zero. In this
case the differential equation for energy changes in
h(z)=1 and the differential equation for the phase does
not have any meaning anymore, because of the absence
of an electromagnetic field.

3 CALCULATIONS COMPARED TO
SIMULATIONS

In this section calculations based on the Hamiltonian
equations of motion of the previous section are presented
and compared to the results of the particle-tracking code
General Particle Tracer (GPT) [3]. In this code, the same
electric and magnetic field description is specified as is
used in the Hamiltonian calculations, however this
particle-tracking code uses an entirely different
calculation method. Calculations of motion in an
electromagnetic field with and without static external
magnetic field have been applied to the periodic part of
the Eindhoven 10 MeV linac.

The energy and phase have been calculated for the
10 MeV linac using eq. 7 (fig. 1). Because of the small
dependence of the particle distance to the z-axis on the
calculation of energy and phase, particles with a different
initial position and divergence will have similar energy
and phase evolution. Calculations are performed at four
different injection phases, with an initial energy of
1 MeV. Energy calculations are compared to the results
of GPT, showing good agreement between both methods.
The particle phase is not provided by GPT, so a
comparison of phases is not possible. However, because
of the agreement in energy calculations, it is obvious that
the Hamiltonian phase calculations must be consistent.

Figure 1: Particle energy H as a function of longitudinal
co-ordinate z in the periodic part of the linac, at various
injection phases. Hamilton calculations are presented by
the dashed line, GPT simulations by the solid line.
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Fig. 2 depicts the calculations of the distance of a particle
to the z-axis, r, and the divergence r’  in the linac, using
eqs. 9 and 10. Particles are injected at various phases at
1 MeV parallel to the z-axis with an initial radius
r = 3mm. It is shown that there is a good agreement
between Hamiltonian calculations and GPT simulations.

Figure 2: Particle distance to z-axis, r, and divergence, r’ ,
calculations as a function of z, for the entire periodic part
of the linac (left figs.) and for the first six cells of the
periodic part (right figs.) Hamilton calculations are
presented by the dashed line, GPT simulations by the
solid line.

Fig. 3 shows the azimuthal co-ordinate θ and its
derivative θ’ as a function of z in the linac for the same
calculations as depicted in fig. 2. Again there is a good
agreement between Hamiltonian calculations and GPT
simulations.

Figure 3: Particle azimuthal co-ordinate, θ, and its
derivative, θ’ , calculations as a function of z, for the
entire periodic part of the linac (left figs.) and for the first
six cells of the periodic part (right figs.) Hamilton
calculations are presented by the dashed line, GPT
simulations by the solid line.

4 CONCLUSIONS
An analytic description of particle motion in linear
accelerators has been developed, in an earlier paper
restricted to higher energy standing wave structures,

while in the present paper this has been extended to the
case of low-energy travelling-wave linacs, in which
solenoidal fields may be incorporated. The Hamiltonian
calculations yield a remarkable agreement with results of
particle-tracking codes but they are much faster
performed than simulations by these codes.
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APPENDIX
Consider the following equations:

(A1)

Thus, using eq. 8:

(A2)

Substitution of the vectorpotential given by eq. 1 yields:

(A3)

in which the z-dependence of the amplitude in Ar has been
ignored. After some mathematical manipulation and
replacement of the argument (knz-ωt)  by (2πnz/d+kζ) the
following expression holds:

(A4)
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