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This paper describes the problem of ion RF focusing in
the axisymmetric RF field involving one synchronous and
several nonsynchronous harmonics. The influence of
nonsynchronous harmonics on ion beam dynamics is
studied by means of 3D effective potential, which is
obtained for smooth approximation. The motion equation
is presented in Hamilton’s form. The possibility of
simultaneous transverse focusing and phase stability for
accelerating ion beam in the RF field without the
synchronous harmonic is shown.
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It is known, that in order to achieve simultaneous
transverse focusing and phase stability for the accelerating
ion beam in linac it is necessary to use external focusing
elements or to apply a special configuration of the RF
field. The second way is more effective for low energy ion
RF accelerators . In papers [1-3] it was shown that the RF
system with several traveling waves, one being
synchronous with the beam may provide simultaneously
acceleration and focusing of ions. The systems with
infinite numbers of harmonics were investigated
numerically [4]. Besides, it was shown that the required
effect can be achieved in the undulator accelerators,
where the synchronous harmonic is absent [5]. In this
paper the method of analysis of 3-D beam dynamics in the
polyharmonic RF field of linac is suggested. For this
purpose the averaging method is used. In such approach
the motion equation has the Hamilton’s form. It allows us
to take into account the relationship between transverse
and longitudinal oscillations. The shape of the effective
potential obtained describes the 3D motion of the particle
completely.
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The RF field in the periodical structure can be presented
in the form
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of structure D . Trajectories of particles in the field (1)
may be expressed by the summation of two different types
of motion rs  and ~r , which are caused by slowly varying

field and the rapidly oscillating one respectively. By
means of averaging method the motion equation for slow
component can be obtained in the form
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ψ  and βs --are phase and velocity of synchronous

particle and s is synchronous harmonic’s number. In the
following the variable χ = −z zs  and r  will be used as

a longitudinal and transverse variable respectively. The
effective potential function Ueff  describes particle

dynamics in the RF field in smooth approximation
completely. The result is that the equation (2) is presented
in Hamilton’s form. The function Ueff  connects

longitudinal and transverse motions of ion and allows us
to investigate their influence on each other. The first
summand U0  describes the interaction between particle

and synchronous wave, the second one U1  defines the

focusing action of nonsynchronous harmonics. The
functions U2 3,  are mixed terms, which are describing the

influence of nonsynchronous waves both on transverse
and longitudinal dynamics. Simultaneously radial and
phase stability takes place when the function Ueff  has an

absolute minimum. This is possible when some conditions
on amplitudes and phase of harmonic are satisfied.
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���SYNCHRONOUS AND ONE
NONSYNCHRONOUS HARMONICS

For two harmonics s and n the item U2 0= . Let’s define

the frequencies of radial and phase oscillations as
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conditions of transverse and longitudinal stability are
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It can be seen from (4), (5) that the larger the ratio
e en s/ , the more effective transverse focusing is.

Besides, this focusing is stronger when s n< , i.e. the
acceleration wave is faster than the focusing one. The
simple analysis shows that for the case e en s/ >> 1
impact of the term U3  is unessential and ω r z, 1  can be

neglected. In the following we will assume e en = max ,

e kes = max , where k < 1 and emax is defined by the

breakdown voltage. The critical value of k  can be found
from (4). The overlapping of the phase stability buckets of
neighboring harmonics is undesirable. Thus, the
parameter emax is also bounded above:

−∆<+ s,nns
2/12/1

max )v/vk1(e2             (6)

The function Ueff  allows us to take into account the

relationship between radial and phase oscillations
accurately. In the simplest approach [7], considering the
longitudinal oscillations to be in the form
χ ω τ= Φ sin( )z , we can obtain from (2) the equation

of the transverse motion as

d r du a q u r2 2 2 2 2 0/ ( sin )+ + =π π  with

a r z= [ ( ) / ( )]2 0 0 2ω ω , q ctg= Φ ψ ; Φ  is the

amplitude of longitudinal oscillations. Then the condition
of resonance is

2 0 0ω ωr z l( ) / ( ) = , l =1, 2, 3, ...          (7)

The zone of instability corresponds to each l  in (7). The
conditions (4), (6), (7) formulate the restrictions on
amplitudes of harmonics. The diagram of stability
including only conditions (4) and (7) is shown in Figure 1.
In order to investigate the dependence of transverse
frequency and/or transverse emittance on harmonic’s
numbers one can fix the parameters emax, k , ψ  (i.e. fix
the ω z  and/or the longitudinal emitance) and calculate

the value of ω r  for different s , n and h0 . This analysis

was done for the proton acceleration system with
Emax =100 kV/cm, k=0.15, ψ = π / 4 , βs =0.015,

λ=200cm. The most effective transverse focusing is
provided by the system with s=2, n =3 for h0 =0 and

s=0, n =1 for h0 = π / D . Besides, the radial focusing

is more effective for the systems with s n< .

       

Figure 1: The transverse stability and the zones of
parametric resonance
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/HW¶V DGG RQH PRUH QRQV\QFKURQRXV KDUPRQLF ZLWK

QXPEHU S WR WKH 5) ILHOG GLVFXVVHG DERYH. ,Q WKLV FDVH

VXPPDQGV U2  and U3  can be not equal to 0. These

terms render acceleration and defocusing influence on
particle motion. Here the items U2 3,  are of the same

order as U1  so it is necessary to take them into account.
The analysis of influence of the summands U2 3,  shows

that these terms deform the shape of Ueff  significantly.

So the phase capture is reduced considerably. At the same
time, the contribution of the items U2 3,  into the

acceleration gradient can exceed the contribution of U0

in several times. It means, that such system may turn out
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to be effective for acceleration of the bunched beam. The
transverse emittance and/or ω r  is determined by the ratio

between terms U1  and U2 3, . Figure 2 shows ω
r

r( )

for different combinations s, n, p. The parameters of the
system are the same as those discussed above; k=0.3,
e ep = max . The most effective transverse focusing is

provided by the system with s=2, n =1, p=3 and h0 =0.

           

Figure 2: The dependence of transverse frequency on the
radius
1—{s=0, n=1, p=2}; 2—{s=1, n=0, p=2}; 3—{s=2, n=1,
p=3}; h0 = π / D . 4—{s=2, n=1, p=3}; h0 =0.
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The conclusion about the influence of nonsynchronous
waves on longitudinal dynamics of the beam becomes
even more convincing if in the RF system, discussed in
the previous chapter the synchronous harmonic is absent.

Table 1: The comparison of different acceleration systems

es n, ≠ 0 es n p, , ≠ 0 en p, ≠ 0

           s=1,
1         n=2,
           p=0,

ω r =0.13

ω z =0.17

T=0.75

ω r =0.10

ω z =0.24

T=1.19

ω r =0.16

ω z =0.17

T=1.1
            s=2,
2          n=3,
            p=1

ω r =0.18

ω z =0.17

T=0.75

ω r =0.16

ω z =0.29

T=2.7

ω r =0.19

ω z =0.23

T=1.96

T dW dzs s≡ / , MeV/m; 1: h0 = π / D � �: h0 =0

In this case the influence of focusing term U1  and

accelerating ones U2 3,  may turn out to be sufficient to

create 3D potential well in which radial and phase
oscillations are stable. Besides, the conditions similar to
(6) and (7) can be obtained. The comparison of
characteristics of different acceleration systems are shown
in Table 1. The parameters of the system are the same as
those discussed above, ψ=π/3.

One can see that acceleration and transverse focusing
in the RF field without synchronous harmonic is possible.
Moreover, such system may be more effective than the
standard one with synchronous and one nonsynchronous
waves.
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In order to test all the results obtained the computer
simulation was done. The motion equation in the field (1)
was solved numerically for all the acceleration systems
discussed. It was shown that the averaging method allows
us to describe the behavior of the beam correctly. The
range of velocities where the investigation of the beam
dynamics by means of effective potential function Ueff  is

completely valid is bounded below. For instance, in the
case of protons βs > 0 005. .
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The method of analysis of the ion beam’s dynamics in the
polyharmonic RF field is suggested. The RF system with
synchronous and one nonsynchronous harmonics is
investigated completely. The conditions of stability are
obtained. The features of the acceleration system with two
nonsynchronous waves are shown. The possibility of
simultaneous longitudinal and transverse focusing of the
beam in the field without synchronous harmonic is
exhibited. The comparison of the acceleration system
discussed is done. All results are tested by computer
simulation of beam dynamics in the RF field.
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