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Abstract

Higher order wakefields in the CLIC multibunch
accelerating structure (called the TDS, Tapered Damped
Structure) are suppressed through a combination of heavy
damping and moderate detuning. A new approach to
computing the transverse wake function of such a highly
damped periodic structure is presented. The driving
bunch produces fields that travel with the propagation
characteristics (given by the frequency dependent
complex wave number) of the damped periodic
waveguide. The fields in the structure are calculated by
integrating the propagated waves excited by the Fourier
decomposed driving bunch. Strong damping produces a
propagated wave integral that converges within a few
cells. Computational and experimental techniques to
obtain wave numbers are described.

1 INTRODUCTION
Higher order wakefields in the CLIC multibunch
accelerating structure are suppressed through a
combination of heavy damping by waveguides and
moderate detuning. The techniques needed to compute
the transverse wake function of a damped structure such
as the TDS have been developed and include an
uncoupled circuit model, a coupled double-band circuit
model and MAFIA time domain computations [1,2,3].
The transverse wake functions of the TDS computed
using these techniques agree very well and confirm that
the structure achieves the required performance. None of
the techniques, however, give a simple and intuitive
understanding of the physics underlying the interaction
between a relativistic beam and a heavily damped
periodic structure. An attempt to clarify this has resulted
in the formulation of a new method to determine the
transverse wake.

This new method, named the "wave number" method,
derives the wake directly from the propagation
characteristics of fields inside a periodic structure and
from the coupling of the fields to a small current slice.
The derivation is made in the frequency domain, giving
the transverse kick spectrum, and the time domain wake
function is found by taking the Fourier transform. The
propagation characteristics and coupling can be obtained
simply from either measurement or computation.

The wave number method naturally takes into
account such effects as the cutoff frequency of damping
waveguides and imperfect waveguide terminations. The

concept of synchronism, confusing in the presence of
heavy damping, emerges naturally from the derivation.
The wake can be calculated over an arbitrary frequency
band so higher passbands can be included without any
reformulation as is necessary in a circuit model.

2 DERIVATION OF THE KICK
SPECTRUM

The derivation of the transverse kick spectrum is made in
the following steps: First the bunch driving the wake is
Fourier decomposed into a steady state current
distribution. Next the waves radiated by this current
distribution are described and propagation is included. An
integral is then made which sums the fields that propagate
to a point in the structure from all other points in the
structure. These fields give the kick spectrum.

A very short driving bunch that travels to the right
(towards +z) at the speed of light and which crosses z = 0
at t = 0 is described by the delta function current,

( )ctztzI −= δ),( (1)

The Fourier transform of this driving current is simply,
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This represents a flat spectrum of currents, each
frequency with a spatial variation given by the wave
number kbeam= ω/c.

Every differential slice of current acts as a small
antenna launching fields that travel to the right and left
inside the waveguide. The coupling of the current slice to
the fields is a function of frequency, since the field
pattern of a mode changes with frequency, and is
represented by the term A(ω). The phase of the radiated
wave is determined by the phase of the current slice. The
phasors of the waves radiated by the current distribution
at the position they are radiated are consequently,
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Depending on the direction, the waves then propagate
according to the wave number,

zike )(ω to the right
zike )(ω− to the left (4)
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 A schematic picture of the fields that fall on the
origin which have been radiated from reference distances
-z0 and z0 is shown in Figure 1.

Figure 1: Schematic picture of the excitation and
propagation of waves inside the waveguide.

The phasors of the wave radiated from the positions
±z0 and arriving at the origin are found by multiplying
the phasor of the excitation by that of the propagation.
The waves travelling to the right from -z0 are given by,
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The waves travelling to the left from z0 are,
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The total field at the origin is the integral of the
phasors radiated from all distances,
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If there are any losses, k(ω) is complex and the integral
converges,
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The kick on the beam is derived from the field by
multiplying by the same factor A(ω) as the coupling of
the current to the field and is given by,
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Equation 8. shows that the kick spectrum, and
consequently the transverse wake function, is a
remarkably simple function of only a wave number
spectrum and a normalized frequency dependant
coupling. Equation 8. is referred to as the 'propagated
wave integral'.

3 INTERPRETATION OF THE
DERIVATION

A number of physical effects emerge from the derivation.
Synchronism between the relativistic beam and the
structure's phase velocity is evident in equation (8). A
low loss mode has a wave number that is predominantly
real and there is a strong peak in the spectrum E(ω) for
the frequency where the real part of k(ω) is equal to ω/c.
The peak occurs in the integral of the fields generated
behind the exciting bunch (left hand term in equation 7),
because the radiated waves from behind the bunch add
constructively over large distances. A narrow peak
dominates the kick spectrum and results in a strong wake
at the synchronous frequency.

In a damped structure, the imaginary part of k(ω) is
larger compared to the real part so the denominator in
equation (8) does not become small when the real part
equals ω/c. The kick spectrum is broadened, resulting in
the expected decay when the Fourier transform is taken.

From another perspective, fields in a damped
structure are attenuated with distance causing a
suppression of the constructive addition of fields over
long distances that otherwise leads to a sharply peaked
wake spectrum. The interaction between beam and
structure occurs only over distances of the order of the
attenuation length. This emerges in equation (7), where
the integral converges more quickly for increasing losses.
A convenient side effect is that short models can be used
for computations and measurements on heavily damped
structures.

The derivation given is section 2 has implicitly
assumed that the interaction with the mode is dominated
by interaction with the lowest space harmonic. A higher
space harmonic can be considered separately, and the
kick spectrum added to that of the lowest space
harmonic. All space harmonics of course have the same
value of complex wave number.
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4 PRINCIPLES OF MEASUREMENT AND
COMPUTATION

The derivation of the kick spectrum has shown that the
wakefield behavior of a structure can be computed from
a simple function of only k(ω) and A(ω). These two
terms are readily determined for a particular structure
geometry using both measurement and computer
modeling. Both measurement and computer modeling are
simplified by including a conducting azimuthal
symmetry plane: dipole modes are supported and
monopolar modes are not. Measurement will be
considered first.

The most conceptually simple measurement of k(ω)
in a periodic structure can be made by measuring the
transmission through two lengths of guide that differ by
one structure period (with period length l). The change in
transmission directly gives eik(ω)l. Good accuracy requires
a good match between the periodic structure and the
measuring waveguide. The damping inherent to a high
loss structure like the TDS can be used to eliminate
multiple reflections and the measurement can be made on
a relatively short section of line with large reflections
into and out of the periodic line.

A(ω) can be measured in an experimental setup using
small loop antennas because an offset beam excites
dipole modes with the same sensitivity to field
configuration, and consequently frequency variation, as a
small loop antenna. An offset beam excites dipole modes
equivalently to two beams traveling in opposite
directions and offset in opposite directions. A pair of
offset beams can be decomposed into a series of
infinitesimal current loops.  Currents flowing between
the beams cancel in adjacent loops. A schematic
representation of this is shown in Figure 2. These current
loops have the same topology and thus the same field
pattern sensitivity as a loop antenna.

Figure 2: Equivalence between the driving beam and a
decomposition in current loops.

A(ω) and k(ω) can be simultaneously extracted from a
short model shown schematically in Figure 3. The model
has a conducting azimuthal symmetry plane and a pair of

small half loops mounted on the end of a coaxial cable.
The measurement consists of comparing the transmission
across one cell, T1, to the transmission across two cells,
T2.

Figure 3: Schematic view for the measurement of A(ω)
and k(ω).

The two transmission coefficient can be expressed in
terms of A(ω) and k(ω),
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This measurement is in principle possible with any
periodic structure although the ends of a low-loss
structure must be well matched to avoid creating
standing waves. The ends of a highly-damped structure
are effectively matched by the internal attenuation over a
sufficient length. The loops must be small compared to
about a quarter of the free space wavelength at the
frequency of measurement.

The measurement techniques presented above are
also easily transferable to computer programs, such as
HFSS, that are able to compute scattering matrices. In
this way the intermediate results in the computation of a
transverse wake function can be compared directly to the
results from simple experiments.
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