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Particle accelerators are difficult to model and control

1.7 km

A. Marinelli, et al., Nat. Commun. 6,  6369 (2015)
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Interesting challenges for modeling / control

• Complex systems (nonlinear, large parameter spaces)
• Interacting subsystems
• Variety of diagnostics (e.g. beam images) 

• Time-varying/ non-stationary behavior ("drift”)

Strong incentives for improving system understanding and control

• High user demand à want to switch between custom user requests quickly
• High cost for unintended down-time à user time, scientific output
• Achieve challenging beam setups for new science goals
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Interesting Technical Challenges
• Complex/nonlinear dynamics
• Many small, compounding errors 
• Many parameters to monitor and control
• Interacting sub-systems
• On-demand changes in operational state
• Diagnostics sometimes limited or not put to 

full use in control (e.g. images)
• Time-varying/ non-stationary behavior

Uncertain, time-varying, nonlinear, many-parameter systems with continuous action spaces:  
à of great interest for research in control and machine learning
à lots of opportunity to both gain from and contribute to this area

Strong Incentives for Better Control
• Cost of running àTime/energy efficiency of control

• Cost of unintended down-time à Personnel cost, user time, bulk scientific output

• Achieving performance needed for science goals and other applications
• improving accelerator components and control both play a role
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LCLS

Even more challenging as we move to more complicated acceleration schemes
(e.g. superconducting, plasma-based acceleration) and push to more extreme 
beam parameters



Major use cases for ML in particle accelerators

• Detecting / predicting unwanted changes or failures

• Getting more useful information out of complicated machine signals (e.g. 
images, waveforms)

• System control and optimization

• Fast, accurate system models

• Facilitate improved physics understanding of machine behavior

à Will give examples of each of these
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Anomaly Detection: identify bad BPM signals

• Don’t want to use faulty BPM signals in 
optics measurement and correction!

• Standard techniques (e.g. SVD) can 
remove most bad signals, but not all

• Various clustering algorithms have been 
applied to LHC BPMs (DBSCAN, Isolation 
Forests, Local Outlier Factor)
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of existing tools. Looking for a machine learning based
solution for the described problem, we are going into the

Unsupervised learning deals with tasks where only input
data is available and the target is to find patterns in the given
data or to extract new information. Opposite to supervised
learning, unsupervised techniques provide the possibility to
identify unusual patterns (outliers) without being trained on
labeled data. Several unsupervised learning algorithms have
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fewer outliers in beta-beating computation

Lighter shade – total number removed
Darker shade – actual bad BPMs removed

Balance for different accelerator needs

simulation
study

Results from 2018 MD run

E. Fol et al.,  IPAC ’19
(and earlier work by E. Fol at ICFA ML workshops)



Diagnostic Analysis / Reconstruction

Complicated signals used in feedback control and experimental analysis 
(e.g. beam images, rf waveforms)

àCan use ML to extract more useful information from these signals

A. Marinelli, et al., Nat. Commun. 6,  6369 (2015)

Time à

En
er

gy
 à

e- beam 

A. Solopova, IPAC’19
J. Qiang, et al., PRSTAB30, 054402, 2017

àNNs are particularly useful for this
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Free Electron Laser: e- beam loses energy 
to photon beam

e- beam image before/after lasing process 
provides critical information to users 
about photon beam

• relies on slow, iterative reconstruction 
algorithm to get X-ray power profile

• iterative method doesn’t work well for all 
regimes (e.g. in saturation)

time à

en
er

gy
 à

Instead: use convolutional neural net 
to get accurate predictions quickly

Diagnostic Analysis / Reconstruction: 
X-Ray power profile from e- beam image

e- beam

X. Ren,  A. Edelen, D. Ratner, et al.

before
lasing

after
lasing



e.g. at FAST (Fermilab) multi-slit emittance measurements took 10-15 seconds in each plane 

A. L. Edelen, et al., FNAL Accelerator Seminar, Jun. 2017: https://tinyurl.com/y3l32vbz
A. L. Edelen, J.P. Edelen, D. Edstrom, et al. NAPAC16, TUPOA51
A. L. Edelen, J.P. Edelen, et al. 1st ICFA ML Workshop, Feb. 2018

A. L. Edelen, J.P. Edelen, et al. IPAC18,  WEPAF040Reconstruction:  Virtual Diagnostics

The subject of this virtual diagnostic work

to high energy line 
and IOTA

!"
!!′
!$"

mask screenbeam

fit	to	obtain	
subset	of	phase	
space	parameters

section for virtual diagnostic 

Some diagnostic measurements are slow + destructive to the beam

à can we use ML to get a non-destructive prediction of what these diagnostics would show?

https://tinyurl.com/y3l32vbz


Neural
Network

Solenoid Current

Phases (Gun, CC1, CC2)

Initial Bunch Properties
(charge, length, ε

x,y 
, x-y corr.)

Transmission

Average Beam Energy

Transverse Sigma Matrix

ε
x,y  β

x,y
α

x,y

— 600	simulation	samples
— 250	measured	data	samples
— fully-connected,	feedforward	NN	
— tanh activation	functions

Simulated NN Predictions Difference

Reconstruction:  Virtual Diagnostics

A. L. Edelen, et al., FNAL Accelerator Seminar, Jun. 2017: https://tinyurl.com/y3l32vbz
A. L. Edelen, J.P. Edelen, D. Edstrom, et al. NAPAC16, TUPOA51
A. L. Edelen, J.P. Edelen, et al. 1st ICFA ML Workshop, Feb. 2018

A. L. Edelen, J.P. Edelen, et al. IPAC18,  WEPAF040

https://tinyurl.com/y3l32vbz


LCLS-II XTCAV

FACET-II XTCAV

Real diagnostic not always available:
• slower update rate than desired
• destructive, cannot use during user operations
• not sensitive in entire operating range
• moved to another location (e.g. cost constraints)

Reconstruction:  Virtual Diagnostics

A. Sanchez-Gonzalez, et al.  
https://arxiv.org/pdf/1610.03378.pdf

2016 study: can use archive data to learn 
correlation between fast and slow diagnostics



LCLS-II XTCAV
Real diagnostic not always available:
• slower update rate than desired
• destructive, cannot use during user operations
• not sensitive in entire operating range
• moved to another location (e.g. cost constraints)

Preliminary simulation study 
for FACET-II and experimental 

study at LCLS looks 
encouraging

Reconstruction:  Virtual Diagnostics

FACET-II XTCAV

C. Emma,  A. Edelen, et al., PRAB21, 112802 (2018)

C. Emma, A. Edelen, et al., PRAB21, 112802 (2018)



Two parameters scanned:

L1s phase from -21 to -27.8 deg

BC2 peak current from 1-7 kA

Measurement ML Prediction 

• 5 inputs

- L1S and LIX amplitude, LIS phase

- BC1&2 peak current

• Large sweep of phase space from 2D scan

•Ongoing dedicated effort in FACET-II to 
provide LPS information to their users

C. Emma, A. Edelen, et al., PRAB21, 112802 (2018)

C. Emma, A. Edelen, et al., PRAB21, 112802 (2018)

Reconstruction:  Virtual Diagnostics
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Shots with 
poor  
prediction

• For some shots XTCAV and BC2 current readings aren’t consistentà results in poor prediction
à ML model is only as good as the input it’s given

à Flagging when to trust the prediction is important (e.g. tag bad shots)

Reconstruction:  Virtual Diagnostics

C. Emma, A. Edelen, et al., PRAB21, 112802 (2018)
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Control / Tuning

no learned 
representation of 

system
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Can also use ML to exploit 
learned representations of the 
system to inform the search

(model predictive control,
Bayesian optimization, 

deep reinforcement learning, 
warm starts from ML models,

inverse ML models)

Control / Tuning



Control / Tuning: Bayesian Optimization

• Bayesian Optimization with Gaussian Processes (GP) applied 
to FEL tuning at LCLS

à tune quadrupole magnets to maximize FEL pulse energy

• Incorporated physics correlations into kernel for GP model

• Recently the same tools were applied to SPEAR3 with 
minimal overhead  (a few days of work)

20

ground truth à

widths = 2
ρ = 0.7

ρ = 0.7ρ = 0

figures: J. Duris, D. Kennedy

Kernel correlation improves regression on the same samples

Measured FEL: 
adjacent quads 
are anticorrelated

J. Duris, D. Kennedy, A. Hanuka, J. Shtalenkova, A. Edelen, A. 
Egger, T. Cope, D. Ratner, S. Ermon, M. McIntire, in preparation



Control / Tuning: Safety Constraints

21

Add these requirements 
as safety constraints 

Don’t just want to maximize FEL energy à we have other requirements

• pulse energy briefly drops below certain level à angry users!

• beam losses go above a certain threshold à damage machine!

(a
rb
)

timestep Figure courtesy Johannes 
Kirschner (ETH Zurich)

Has been developed by 
ETH Zurich and  tested 

experimentally at 
SwissFEL

J. Kirschner, et al., ICML, 2019, https://tinyurl.com/y59sy6cs
J. Kirschner, et al., ICFA ML Workshop, 2019



ML
Inverse 
Model

L1S phase
BC2 peak current

Local 
optimizer

Local optimizer alone was unable to 
converge à able to converge after 

initial settings from neural network

Suggested 
initial 

settings

warm start+local opt.

local opt. 

Control / Tuning: 
warm start with inverse models

• Often have to switch between user requests 
quickly

• Use inverse model to give rough suggested 
settings à then fine-tune with local optimizer

• Use a NN to map image to settings

•

A. Scheinker, A. Edelen, D. Bohler, C. Emma, A. Lutman., PRL 121, 044801 (2018)
earlier warm start work: A.L. Edelen, J.P. Edelen, et al., FEL ‘17



J. Qiang, et al., PRSTAB30, 
054402, 2017

MeasurementSimulation

… but they are computationally expensive 
and don’t always match the machine well

Accelerator simulations that include nonlinear + 
collective effects are powerful tools…

Prohibits use as an online model (e.g. diagnostic / control applications)
Impedes offline start-to-end optimization and control prototyping

Often takes much effort to replicate real machine behavior 

“10 hours on thousands of 
cores at the NERSC”

Faster, more accurate machine models



… but they are computationally expensive 
and don’t always match the machine well

Accelerator simulations that include nonlinear + 
collective effects are powerful tools…

Faster, more accurate machine models

e.g. GPU-accelerated HPSim at LANSCE
(based on PARMILA)

X. Pang, et al., PAC13, MOPMA13
L. Rybarcyk, HB2016, WEPM4Y01

X. Pang, L. Rybarcyk, CPC185, is. 3 (2014)
X. Pang, IPAC15, WEXC2

One approach: faster modeling codes
Simpler models (tradeoff with accuracy)

analytic calculations

Parallelization and GPU-acceleration of existing codes
HPSim/PARMILA

elegant 

Improvements to modeling algorithms

I. V. Pogorelov, et al., IPAC15, MOPMA035
X. Pang, PAC13, MOPMA13

e. g.  J. Galambos, et al., HPPA5, 2007

J.-L. Vay, Phys. Rev. Lett.98 (2007) 130405Lorentz-boosted frame
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Execution often still isn’t so fast (sec – mins)

Can require HPC resources

Still not easy to replicate machine behavior!

e.g. GPU-accelerated HPSim at LANSCE
(based on PARMILA)



Initial examples from FAST injector at Fermilab:

PARMELA with 2-D space charge: ~ 20 minutes
Neural network: ~ a millisecond

… but they are computationally expensive 
and don’t always match the machine well

Accelerator simulations that include nonlinear + 
collective effects are powerful tools…

Faster, more accurate machine models

Complementary approach: ML model
Once trained, neural networks can execute quickly

Train on sparse sample from high-fidelity simulations

Train on measured data

(αx		,	αy)

(εnx ,	εny)

(βx	,	βy)

(Np)

(E)

(αx		,	αy)

(εnx ,	εny)

(βx	,	βy)

(Np)

(E)

The subject of this virtual diagnostic work

to high energy line 
and IOTA

All mean absolute errors between 0.9% and 3.1% of the parameter ranges

A. L. Edelen, J.P. Edelen. D. Edstrom, et al. NAPAC16, TUPOA51
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Wide scan of 6 settings for LCLS in Bmad

Faster, more accurate machine models: LCLS

Variable Min Max Nominal Unit

L1 Phase -40 -20 -25.1 deg

L2 Phase -50 0 -41.4 deg

L3 Phase -10 10 0 deg

L1 Voltage 50 110 100 percent

L2 Voltage 50 110 100 percent

L3 Voltage 50 110 100 percent

• Trained neural network to predict 25 scalar outputs (!",$,%
&",$ !"',$' !( etc…) and longitudinal phase space at the 

undulator entrance 

• Good agreement with simulation (and 106x faster execution)

LCLS simulated with CSR, wakefields, space charge 

11.4 GeV

13.09 GeV

10.49 GeV

Neural Network Simulation 



• Trained NN to predict 12 scalar outputs and longitudinal phase 
space (LPS) 

• NN in good agreement with simulation (and 105x faster)

0 12 24 36 48

ps (relative)

3

7

11

15

19

ke
V

(r
el

at
iv

e)

Sim

0 12 24 36 48

ps (relative)

3

7

11

15

19

ke
V

(r
el

at
iv

e)

NN 0 10 20 30 40

ps (relative)

2

5

8

11

14

ke
V

(r
el

at
iv

e)

Sim

0 10 20 30 40

ps (relative)

2

5

8

11

14

ke
V

(r
el

at
iv

e)

NN
0 9 18 27 36

ps (relative)

4

9

14

19

24

ke
V

(r
el

at
iv

e)

Sim

0 9 18 27 36

ps (relative)

4

9

14

19

24

ke
V

(r
el

at
iv

e)

NN

W

Wide scan of 5 settings in ASTRA

Variable Min Max Nominal Unit

Gun Phase -10 10 -6.6 deg

Solenoid 1 0 0.1 0.06 T

Solenoid 2 0 0.1 0.03 T

Buncher Amplitude 0 2 1.80 MV/m

Buncher Phase -100 -60 -80.3 deg

Example !" surface from 2D scan, verified with ASTRA

Neural Network Simulation 

Faster, more accurate machine models: LCLS-II Injector



ML Model

Genetic Algorithm 
(to optimize accelerator 

settings)

Physics 
Simulation

(a)  Run Optimizer on ML Model and Physics Simulation 
(b) Compare Resulting Pareto Fronts

Approach for Validating ML Model Performance Under Optimization

Genetic Algorithm 
(to optimize accelerator 

settings)

Beam Parameter 1

Be
am

 P
ar
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et

er
 2

Generate ML Model using Sparse Random Sample

slow-to-execute

Small random 
sample of 

inputs
Physics 

Simulation

Output beam 
parameters

Train ML 
Surrogate Model

fast-to-execute

ML Model

ML Model

Genetic Algorithm 
(to optimize accelerator 

settings)

Physics 
Simulation

(a)  Run Optimizer on ML Model and Physics Simulation 
(b) Compare Resulting Pareto Fronts

Approach for Validating ML Model Performance Under Optimization

Genetic Algorithm 
(to optimize accelerator 

settings)

Beam Parameter 1

Be
am

 P
ar

am
et

er
 2

Compare Resulting Pareto Fronts

Run GA on ML Model and Physics Simulation

How reliably can we use these models with multi-objective optimization?

A. Edelen, N. Neveu, A. Adelmann, Y. Huber, M. Frey 
https://arxiv.org/abs/1903.07759

NSGA-II for optimization:
200 generations
~600 individuals

Input Variables

Solenoids

Gun 
Cavity Linac Cavity

Cathode

𝛆𝜙𝜖𝜖𝜀𝜀𝝙𝜎𝜎𝜎

K1 K2𝜙1
 

G1

𝜙2

G2

Beam 
Propagation

Output Beam Parameters

𝛆x,y,z

𝜎x,y,z

𝝙E

Test Case with Existing Data:  Argonne Wakefield Accelerator Injector

OPAL simulation (PIC) :
3D space charge 
3D field maps

500
random points 

for training



Physics Sim: 
~95k core hrs, 66k sims
2246 cores, 36 hours

Neural Network: 
~2 mins on a laptop

(500 sims for training)

In terms of time-to-solution:

~6.4 mins on 8 cores to make 500-point training data

~10 minutes to train on a laptop

~2 minutes to do optimization on a laptop

Solution not contained in 
training set (orange dots)

A. Edelen, N. Neveu, A. Adelmann, Y. Huber, M. Frey 
https://arxiv.org/abs/1903.07759

Examined with PIC sims of the AWA injector:

MOGA solution with 6 inputs, 7 objectives 
required ~130x fewer simulation evaluations

Surrogate model has 106 x faster execution 

How reliably can we use these models with multi-objective optimization?



1 nC

40 nC

Similar results for other 2D Pareto fronts…

A. Edelen, N. Neveu, A. Adelmann, Y. Huber, M. Frey 
https://arxiv.org/abs/1903.07759

How reliably can we use these models with multi-objective optimization?



Can we bridge the gap between our
simulations and empirical machine behavior?

Poor agreement between physics simulation and measured data

Can’t do a full parameter scan on machine (cost / time)
Initial results from study of injector 

systems look promising
à need to investigate strategies for doing

this routinely and at larger scale

Neural
Network

Solenoid Current

Phases (Gun, CC1, CC2)

Initial Bunch Properties
(charge, length, ε

x,y 
, x-y corr.)

Transmission

Average Beam Energy

Transverse Sigma Matrix

ε
x,y  β

x,y
α

x,y

— 600	simulation	samples
— 250	measured	data	samples
— fully-connected,	feedforward	NN	
— tanh activation	functions

The subject of this virtual diagnostic work

to high energy line 
and IOTA

!"
!!′
!$"

mask screenbeam

fit	to	obtain	
subset	of	phase	
space	parameters

focusing magnets 
+ diagnostic line

Machine inputs

Train on Simulation
+ Fine-tune with
Measurements

Train on
Simulation Only

A. L. Edelen, J.P. Edelen, D. Edstrom, et al. NAPAC16, TUPOA51
A. L. Edelen, J.P. Edelen, D. Edstrom, et al. IPAC18,  WEPAF040

Predicted beam image + 
bulk properties

ML 
Model

Measured Data 
(smaller scan + 
passive data)

Simulation 
Data

(wide scan)

Can we pre-train in simulation and update with measured data?

preliminary



Improve system understanding: 
learn about machine sensitivities

42

• SPEAR3 storage ring injection 
efficiency varies à trajectory 
feedback settings are frequently 
optimized to compensate

F. Wang, X. Huang, ICFA ML Workshop 2019
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• SPEAR3 storage ring injection 
efficiency varies à trajectory 
feedback settings are frequently 
optimized to compensate

• Use NN model to discover what is 
driving the change (i.e. find 
unanticipated parameter 
dependencies)

Improve system understanding: 
learn about machine sensitivities

F. Wang, X. Huang, ICFA ML Workshop 2019
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NAPAC’19, TUPLS14



à Found ground temperature was a 
significant factor

à Can now use to predict ideal orbit 
given ground temperature

• SPEAR3 storage ring injection 
efficiency varies à trajectory 
feedback settings are frequently 
optimized to compensate

• Use NN model to discover what is 
driving the change (i.e. find 
unanticipated parameter 
dependencies)

ground temp
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Improve system understanding: 
learn about machine sensitivities

F. Wang, X. Huang, ICFA ML Workshop 2019
NAPAC’19, TUPLS14



Major Use Cases for ML in Particle Accelerators

• Detecting / classifying / predicting unwanted changes or failures

— failing beam position monitors, cavity quenches

• Getting more useful information out of complicated machine signals

— images, waveforms, etc. 

• System optimization and fast experiment setup

— need solutions for standard setups and previously unseen setups

• System modeling for use in design, online modeling, and model-based control

• Facilitate improved understanding of factors that impact performance

— physics insight, machine sensitivities, hidden variables etc.

• High throughput data analysis / rejection (e.g. LCLS user side)

46



Train on 
Simulation
+ Measured 
Data

Many Open Questions to Address…

• Robustness / model uncertainty e.g. flag when not to trust ML 
algorithm -- switch to physics models or standard control (e.g. 
outside training range, aberrant conditions)

• Strategies for online retraining adapt to new configurations / part 
replacements / drift

• How best to combine simulation and measured data

• Scaling to higher dimension + problem complexity, wider range 
of conditions

• Which combinations of methods (ML and non-ML) will work 
best for different kinds of problems

Train on
Simulation 
Only

Physics Sim: 
~95k core hrs, 66k sims
2246 cores, 36 hours

Neural Network: 
~2 mins on a laptop

(500 sims for training)

Neural Network Simulation



Final Thoughts

• Growing community, three recent workshops:

• ML is a complementary approach to existing techniques and is extremely flexible

• Many opportunities to use ML to improve accelerator performance 

• Relatively simple methods can be readily put to use

• ML is not a panacea! good workflows + data are essential, and many simpler techniques are not put to full use by the 
community (e.g. model predictive control with simple models, LiTrack virtual diagnostic by A. Scheinker and S. Gessner)

• Still exploring the boundaries of usefulness/reliability and tradeoff with time investment

Intelligent Controls for Particle Accelerators
Jan. 2018 at Daresbury Lab
Agenda/Talks: https://tinyurl.com/y9rg3uht

Machine Learning for Particle Accelerators
Feb. 2018 at SLAC, Feb. 2019 at PSI
Agenda/Talks ‘18: https://tinyurl.com/y988njbl
Agenda/Talks ‘19: https://tinyurl.com/y3u3vlpo
Tutorials ‘19: https://tinyurl.com/yypc9lq7

https://tinyurl.com/y9rg3uht
https://tinyurl.com/y988njbl
https://tinyurl.com/y3u3vlpo
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