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Particle accelerators are difficult to model and control
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Interesting challenges for modeling / control

* Complex systems (nonlinear, large parameter spaces)
* Interacting subsystems
* Variety of diagnostics (e.g. beam images)

* Time-varying/ non-stationary behavior ("drift”)

Energy (MeV)

Strong incentives for improving system understanding and control

* High user demand = want to switch between custom user requests quickly
* High cost for unintended down-time - user time, scientific output

Time (fs)

A. Marinelli, et al., Nat. Commun. 6, 6369 (2015)

* Achieve challenging beam setups for new science goals
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* Complex systems (nonlinear, large parameter spaces)

* Interacting subsystems

Variety of diagnostics (e.g. beam images)

* Time-varying/ non-stationary behavior ("drift”)
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Strong incentives for improving system understanding and control

* High user demand = want to switch between custom user requests quickly
* High cost for unintended down-time - user time, scientific output

* Achieve challenging beam setups for new science goals

Even more challenging as we move to more complicated acceleration schemes
(e.g. superconducting, plasma-based acceleration) and push to more extreme * LBNL VisudlizationGroup
beam parameters




Major use cases for ML in particle accelerators
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* Detecting / predicting unwanted changes or failures

*  Getting more useful information out of complicated machine signals (e.g.

images, waveforms)

*  System control and optimization

*  Fast,accurate system models

* Facilitate improved physics understanding of machine behavior

—> Will give examples of each of these



E. Fol et al, IPAC’I9
(and earlier work by E. Fol at ICFA ML workshops)

Anomaly Detection: identify bad BPM signals
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Number of BPMs

Don’t want to use faulty BPM signals in

optics measurement and correction!

Standard techniques (e.g. SVD) can
remove most bad signals, but not all

Various clustering algorithms have been
applied to LHC BPMs (DBSCAN, Isolation
Forests, Local Outlier Factor)
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Diagnostic Analysis / Reconstruction
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Complicated signals used in feedback control and experimental analysis

(e.g. beam images, rf waveforms)

—> Can use ML to extract more useful information from these signals

—> NNis are particularly useful for this
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o J. Qiang, et al., PRSTAB30, 054402, 2017
A. Marinelli, et al., Nat. Commun. 6, 6369 (2015)

A. Solopova, IPAC’19



Diagnostic Analysis / Reconstruction:
X-Ray power profile from e- beam image
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N - before Free Electron Laser: e- beam loses energy
5. lasing to photon beam
B 2
S - : :
Y .le- beam , e- beam image before/after lasing process
T Pt provides critical information to users
time 2
about photon beam
Calculated power profile vs. actual power profile
—— TREX with estimated RMS * relies on slow, iterative reconstruction
15.0 -
~ True Power i _
 mearing True Power algorithm to get X-ray power profile
12:5 1 —— CNN Prediction
10.0 - e iterative method doesn’t work well for all
. regimes (e.g. in saturation)
50 1
22 | d: lutional |
nstead: use convolutional neural net
00 - to get accurate predictions quickly
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A. L Edelen, et al.,, FNAL Accelerator Seminar, Jun. 201 7: https://tinyurl.com/y3I32vbz
A. L. Edelen, |.P. Edelen, D. Edstrom, et al. NAPACI 6, TUPOAS |
A. L. Edelen, |.P. Edelen, et al. [t ICFA ML Workshop, Feb. 2018

A. L. Edelen, |.P. Edelen, et al. IPACI8, WEPAF040

Reconstruction: Virtual Diagnostics
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Some diagnostic measurements are slow + destructive to the beam

- can we use ML to get a non-destructive prediction of what these diagnostics would show?

section for virtual diagnostic
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e.g.at FAST (Fermilab) multi-slit emittance measurements took 10-15 seconds in each plane


https://tinyurl.com/y3l32vbz

Reconstruction: Virtual Diagnostics

A. L Edelen, et al., FNAL Accelerator Seminar, Jun. 201 7: https://tinyurl.com/y3132vbz

A. L. Edelen, |.P. Edelen, D. Edstrom, et al. NAPACI 6, TUPOAS |
A. L Edelen, |.P. Edelen, et al. It ICFA ML Workshop, Feb. 2018
A. L. Edelen, |.P. Edelen, et al. IPACI8, WEPAF040
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Reconstruction: Virtual Diagnostics
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Real diagnostic not always available:

* slower update rate than desired LCLS-Il XTCAV
* destructive, cannot use during user operations
. }—> FACET-II XTCAV

not sensitive in entire operating range
* moved to another location (e.g. cost constraints)

2016 study: can use archive data to learn A. Sanchez-Gonzalez, et al. |
correlation between fast and slow diagnostics hutps:llarxiv.orglpdfi 16 10.03376.pdf
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C. Emma, A. Edelen, et al., PRAB21, 112802 (2018)

Reconstruction: Virtual Diagnostics
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Real diagnostic not always available:

* slower update rate than desired LCLS-Il XTCAV
* destructive, cannot use during user operations
* not sensitive in entire operating range }_' FACET-Il XTCAV

* moved to another location (e.g. cost constraints)
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C. Emma, A. Edelen, et al., PRAB21, 112802 (2018)

Reconstruction: Virtual Diagnostics

LO DL1 BC1 BC2 DL2 Two parameters scanned:
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gun S L1S L2-linac L3-linac undulator / LIs phase from -21 to -27.8 deg
BC2 peak current from -7 kA
Measurement ML Prediction
;.40 g —Measured
2 4 Predicted
220 < A
1 3 :43 \
* 5 inputs g 0 \ \ s ~
220 » Y 3,
- LIS and LIX amplitude, LIS phase & 40 , ,
-40 -30 20 -10 0 10 20 30 40 -40 -30 20 -10 0 10 20 30 40 -40 -30 20 -10 0 10 20 30 40
- BCI&2 peak current
=40 ’
2-20 315
* Large sweep of phase space from 2D scan £, \ _— 21 \
%120 §05
. . . 3 40 ) .
¢ OngOIng dedlcated effort In FACE-I—-” to -40 -30 20 -10 0 10 20 30 40 “ -40 -30 -20 -10 0 10 20 30 40 0 -40 -30 20 -10 0 10 20 30 40
provide LPS information to their users N 2
%.
220 g1
% 0 ‘-—\ R g 1
§>520 505
m 40 2 o
-40 -30 20 -10 0 10 20 30 40 -40 -30 -20 -10 0 10 20 30 40 -40 -30 -20 -10 0 10 20 30 40
z [y m] z [p m] z [y m]

C. Emma, A. Edelen, et al., PRAB21, 112802 (2018)



C. Emma, A. Edelen, et al., PRAB21, | 12802 (2018)

Reconstruction: Virtual Diagnostics
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For some shots XTCAV and BC2 current readings aren’t consistent = results in poor prediction
- ML model is only as good as the input it’s given

- Flagging when to trust the prediction is important (e.g. tag bad shots)



Control / Tuning

Deep Learning

- Swarm Intelligence

representation of <
system

e.g. Simplex, Gradient Descent

\ Mathematical Optimization

-




Control / Tuning

Can also use ML to exploit
learned representations of the
system to inform the search

D

Deep Learning

(model predictive control,
Bayesian optimization,
deep reinforcement learning,
warm starts from ML models,

inverse ML models) | e.g. Emlutionao;Algaﬁthms,
| Swarm Intelligence

e.g. Simplex, Gradient Descent

-

Mathematical Optimization

-




J. Duris, D. Kennedy, A. Hanuka, . Shtalenkova, A. Edelen, A.
Egger, T. Cope, D. Ratner, S. Ermon, M. Mclntire, in preparation

Control / Tuning: Bayesian Optimization

*  Bayesian Optimization with Gaussian Processes (GP) applied

to FEL tuning at LCLS
—> tune quadrupole magnets to maximize FEL pulse energy ' Measured FEL:
. . . adjacent quads
* Incorporated physics correlations into kernel for GP model w  are anticorrelated
g 045
* Recently the same tools were applied to SPEAR3 with -

minimal overhead (a few days of work)
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figures:J. Duris, D. Kennedy



J. Kirschner, et al., ICML 2019, https://tinyurl.comly59sybcs
J. Kirschner, et al., ICFA ML Workshop, 2019

Control / Tuning: Safety Constraints

Don’t just want to maximize FEL energy = we have other requirements
* pulse energy briefly drops below certain level = angry users!

* beam losses go above a certain threshold = damage machine!

. Cé\ 4 5 SafeDescentLineBO
Add these requirements 3
as safety constraints - 3
— T T VY B Y U 4 o T YA R | v AP
& previous best
-
2 2 - €— DescentLineBO
v
Has been developed by d 1 lower bound
ETH Zurich and  tested I J! N
experimentally at 0 — constraint violations
| I I | |

SwissFEL 0 200 400 600 800

time Step Figure courtesy Johannes
Kirschner (ETH Zurich)2 |



Control / Tuning:

warm start with inverse models

A. Scheinker, A. Edelen, D. Bohler, C. Emma, A. Lutman., PRL |21, 044801 (2018)

earlier warm start work: A.L. Edelen, |.P. Edelen, et al., FEL ‘I 7

Often have to switch between user requests

quickly

Use inverse model to give rough suggested

settings =2 then fine-tune with local optimizer

Use a NN to map image to settings

Initial

0.04

Target

0.02

| \

—-0.02

-0.04 Ob[f

-400 0 400
time (fs)

AE (GeV)

Feedback final

Feedback + NN Final

ML Suggested
Inverse initial
Model settings
LIS phase
BC2 peak current
gun L1X
l ) ) XTCAV
L1S L2-linac L3-linac \
BClysomev B243Gev  14Gev  undulator

()

Local
optimizer

Local optimizer alone was unable to

converge = able to converge after

initial settings from neural network




Faster, more accurate machine models

Accelerator simulations that include nonlinear +

collective effects are powerful tools... ... but they are computationally expensive

and don’t always match the machine well

|

Prohibits use as an online model (e.g. diagnostic / control applications)
Impedes offline start-to-end optimization and control prototyping

Simulation Measurement

n
1=
[ )
S

o
o

Often takes much effort to replicate real machine behavior

o

Relative energy (MeV)
o
Relative energy (MeV)

10

8

Relative energy (MeV)
Relative energy (MeV)

60 -40 20 0 20 40 60 -50 0 50
Longitudinal position (um) Longitudinal position(xm)

J. Qiang, et al., PRSTAB30,

‘ 054402, 2017

“10 hours on thousands of
cores at the NERSC”



Faster, more accurate machine models

Accelerator simulations that include nonlinear +

collective effects are powerful tools...

... but they are computationally expensive
and don’t always match the machine well

One approach: faster modeling codes

Simpler models (tradeoff with accuracy)
analytic calculations e.g. |. Galambos, et al, HPPAS, 2007

Parallelization and GPU-acceleration of existing codes

HPSim/PARMILA X. Pang, PACI3, MOPMA| 3
elegant L.V. Pogorelov, et al., IPACI 5, MOPMA035

Improvements to modeling algorithms

Lorentz-boosted frame J.-L.Vay, Phys. Rev. Lett.98 (2007) 130405
J

e.g. GPU-accelerated HPSim at LANSCE
(based on PARMILA)

X. Pang, etal, PACI3, MOPMAI3 X Pang, L. Rybarcyk, CPCI85, is. 3 (2014)
L. Rybarcyk, HB2016, WEPM4Y0 | X. Pang, IPACI 5, WEXC2



Faster, more accurate machine models

ol AR
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Accelerator simulations that include nonlinear +
collective effects are powerful tools... ... but they are computationally expensive

and don’t always match the machine well

One approach: faster modeling codes

Execution often still isn’t so fast (sec — mins)
Can require HPC resources

Still not easy to replicate machine behavior!

e.g. GPU-accelerated HPSim at LANSCE
(based on PARMILA)

X. Pang, etal, PACI3, MOPMAI3 X Pang, L. Rybarcyk, CPCI85, is. 3 (2014)
L. Rybarcyk, HB2016, WEPM4Y0 | X. Pang, IPACI 5, WEXC2




A. L Edelen, |.P. Edelen. D. Edstrom, et al. NAPACI 6, TUPOAS |

Faster, more accurate machine models

Accelerator simulations that include nonlinear +

collective effects are powerful tools... ... but they are computationally expensive

and don’t always match the machine well

Initial examples from FAST injector at Fermilab: e N
PARMELA with 2-D space charge: ~ 20 minutes Complementary approach: ML model
Neural network: ~ a millisecond . .
Once trained, neural networks can execute quickly
™ N . P :
@) Q Train on sparse sample from high-fidelity simulations
O O
— - Train on measured data
.y Average Energy (E) | N
NN Model "C y—>{ Optimization
éﬂ Emittances (€., &)
: N’\ﬁ\?vroarlk ——»{ Beta Function Values (.. B, | ‘
1 i‘{ Alpha Function Values (2, , a)] Input flmglcar::gg
A[ Number of Particles (N,)] \ Y.

All mean absolute errors between 0.9% and 3.1% of the parameter ranges



Faster, more accurate machine models: LCLS
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4 Wide scan of 6 settings for LCLS in Bmad R Neural Network Simulation
LI Phase -25.1 g
o
L2 Phase -50 0 -41.4 deg 2
>
L3 Phase -10 10 0 deg s
L1 Voltage 50 110 100 percent
L2 Voltage 50 110 100 percent 20
L3 Voltage 50 110 100 percent N 114 GeV
v
2
gun L1X E 24
l _ XTCAV e
L1S L2-linac i L3-linac Mgy \ > 16
BCI)somev B243Gey  14GeV  undulator =
\ )
Y
S LCLS simulated with CSR, wakefields, space charge ) oo 20 00 80 L8 0 29 5% 9 18
10.49 GeV

I
=

* Trained neural network to predict 25 scalar outputs (dy.y, ,

w
=

&,y Oy, Op etc...)and longitudinal phase space at the

MeV (relative)
N
o

undulator entrance

=
o

* Good agreement with simulation (and 10%x faster execution)

0 29 58 87 116 0 29 58 87 116
fs (relative) fs (relative)



Faster, more accurate machine models: LCLS-II Injector
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Wide scan of 5 settings in ASTRA
Neural Network
K S T 8 :
Gun Phase -10 10 -6.6 19
Solenoid | 0 0.1 0.06 T £
Solenoid 2 0 ol 0.03 T L
?v 9
Buncher Amplitude 0 2 1.80 MV/m =
4
Buncher Phase -100 -60 -80.3 deg
\ J

* Trained NN to predict |12 scalar outputs and longitudinal phase
space (LPS)

* NN in good agreement with simulation (and 10%x faster)
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How reliably can we use these models with multi-objective optimization?

A. Edelen, N. Neveu, A. Adelmann, Y. Huber, M. Frey
https://arxiv.org/abs/1903.07759
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Generate ML Model using Sparse Random Sample

Small random
sample of
inputs

_,[

Physics
Simulation
slow-to-execute

Output beam
parameters

Train ML
Surrogate Model

ML Model ]

fast-to-execute

Test Case with Existing Data: Argonne Wakefield Accelerator Injector

OPAL simulation (PIC) :
3D space charge
3D field maps

200 generations
~600 individuals

NSGA-II for optimization:

500
random points
for training

Input Variables

Output Beam Parameters

~

)

> o
> o=
> o=
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g
A ° X
Cathode il:l%
Gun
Cawty
Solenoids

Linac Cav:ty

~
&
XY,z
o,
XY,z
U AE
i
Beam
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Run GA on ML Model and Physics Simulation
( )

Genetic Algorithm
(to optimize accelerator ->[ ML Model ]
settings)

Genetic Algorithm
(to optimize accelerator ->[
settings)

Physics
Simulation

20 A —e— GA on Physics Simulation
—e— GA on Neural Network

Ox (mm)

1.15 1.20 1.25 1.30
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A. Edelen, N. Neveu, A. Adelmann, Y. Huber, M. Frey
https://arxiv.org/abs/1903.07759

How reliably can we use these models with multi-objective optimization?

Examined with PIC sims of the AWA injector:

MOGA solution with 6 inputs, 7 objectives
required ~130x fewer simulation evaluations

Surrogate model has 106 x faster execution

300 - e  GA with Physics Simulation
e Random Sample - 500 pts
8 250 4 X  Best Known Pareto Fra
—
=
I 200 A
£
§, 150 A
X
w
100 A

& (Mmm —mrad)

160 -

140 -

120 -

100 -

80

—o— GA with Neural Network
—e— GA with Physics Simulation
x  Best Known Pareto Front

Physics Sim:
~95k core hrs, 66k sims
2246 cores, 36 hours

Neural Network:
~2 mins on a laptop
(500 sims for training)

0.35 0.40 0.45 0.50 0.55 0.60 0.65
AE (MeV)

~6.4 mins on 8 cores to make 500-point training data

In terms of time-to-solution:

~ 10 minutes to train on a laptop

~2 minutes to do optimization on a laptop




A. Edelen, N. Neveu, A. Adelmann, Y. Huber, M. Frey
https://arxiv.org/abs/1903.07759

How reliably can we use these models with multi-objective optimization?

& (Mm — mrad)

& (MM — mrad)

Similar results for other 2D Pareto fronts...

5.0
—o— GA with Neural Network
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x  Verified Points
4.0 4
3.5 A
3.0 A
1nC
2.5
0.04 0.06 0.08 0.10
AE (MeV)
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—e— GA with Neural Network
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A. L. Edelen, |.P. Edelen, D. Edstrom, et al. IPACI8, WEPAF040
A. L. Edelen, |.P. Edelen, D. Edstrom, et al. NAPACI 6, TUPOAS |

Can we bridge the gap between our
simulations and empirical machine behavior?
p

Poor agreement between physics simulation and measured data . L.
Initial results from study of injector

systems look promising

- need to investigate strategies for doing
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. F-Wang, X. Huang, ICFA ML Workshop 2019
Improve system understanding:

learn about machine sensitivities

* SPEARS3 storage ring injection

" From the 2017-2018'run,’ | | S ]
efficiency varies = trajectory 140 - N : 1
: ' it
feedback settings are frequently 120 ; M P ikt
. £ 100 L 1
optimized to compensate o L M L
= sof ' |
60 . : ' 1
“or Booster Q-meterbased inj. eff. measure has a calibration error. 1
80 100 120 140 160 180
time (days)
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. F-Wang, X. Huang, ICFA ML Workshop 2019
Improve system understanding: NAPAC'19,TUPLS |4

learn about machine sensitivities

* SPEARS3 storage ring injection
efficiency varies = trajectory

Injection Efficiency (%)
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—— Data
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Improve system understanding:
learn about machine sensitivities

F-Wang, X. Huang, ICFA ML Workshop 2019

NAPAC’19,TUPLS |4

SPEARS3 storage ring injection
efficiency varies = trajectory
feedback settings are frequently
optimized to compensate

Use NN model to discover what is
driving the change (i.e. find
unanticipated parameter
dependencies)

—> Found ground temperature was a

significant factor
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Major Use Cases for ML in Particle Accelerators

Detecting / classifying / predicting unwanted changes or failures

— failing beam position monitors, cavity quenches

¢  Getting more useful information out of complicated machine signals

— images, waveforms, etc.

*  System optimization and fast experiment setup

— need solutions for standard setups and previously unseen setups
*  System modeling for use in design, online modeling, and model-based control

*  Facilitate improved understanding of factors that impact performance

— physics insight, machine sensitivities, hidden variables etc.

*  High throughput data analysis / rejection (e.g. LCLS user side)
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Many Open Questions to Address...
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Robustness / model uncertainty e.g. flag when not to trust ML
algorithm — switch to physics models or standard control (e.g.
outside training range, aberrant conditions)

Strategies for online retraining adapt to new configurations / part
replacements / drift

How best to combine simulation and measured data

Scaling to higher dimension + problem complexity, wider range
of conditions

Which combinations of methods (ML and non-ML) will work
best for different kinds of problems
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Final Thoughts

¢ Growing community, three recent workshops: _ _
Intelligent Controls for Particle Accelerators

Jan. 2018 at Daresbury Lab
AgendalTalks: https://tinyurl.com/y9rg3uht

Machine Learning for Particle Accelerators
Feb.2018 at SLAC, Feb. 2019 at PSI
AgendalTalks ‘1 8: https://tinyurl.com/y988njbl
AgendalTalks ‘1 9: https://tinyurl.com/y3u3vipo
Tutorials ‘1 9: https://tinyurl.com/yypc9Iq7

e ML is a complementary approach to existing techniques and is extremely flexible

e Many opportunities to use ML to improve accelerator performance

¢ Relatively simple methods can be readily put to use

* ML is not a panacea! good workflows + data are essential, and many simpler techniques are not put to full use by the
community (e.g. model predictive control with simple models, LiTrack virtual diagnostic by A. Scheinker and S. Gessner)

Still exploring the boundaries of usefulness/reliability and tradeoff with time investment


https://tinyurl.com/y9rg3uht
https://tinyurl.com/y988njbl
https://tinyurl.com/y3u3vlpo
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