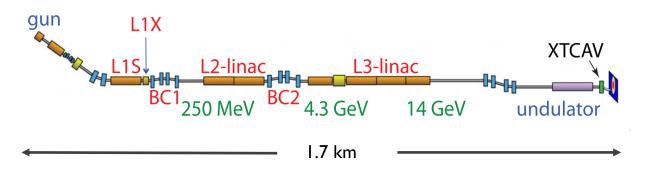
Demonstrations of Machine Learning on Particle Accelerators

Auralee Edelen, Joe Duris, Claudio Emma, Adi Hanuka, Xiaobiao Huang, Dylan Kennedy, Chris Mayes, Nicole Neveu, Daniel Ratner, Xinyu Ren, Jane Shtalenkova, Faya Wang, Xiao Zhang (SLAC), Alex Scheinker (LANL), Andreas Adelmann, Yannick Huber, Matthias Frey (PSI), Jonathan Edelen (RadiaSoft), Sandra Biedron (UNM), Eric Cropp, Pietro Musumeci, Paul Denham (UCLA), Elena Fol (CERN)

NAPAC 2019 I-6 September, 2019 Lansing, MI

Particle accelerators are difficult to model and control



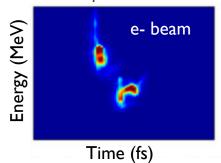
Interesting challenges for modeling / control

- Complex systems (nonlinear, large parameter spaces)
- Interacting subsystems
- Variety of diagnostics (e.g. beam images)
- Time-varying/ non-stationary behavior ("drift")

Strong incentives for improving system understanding and control

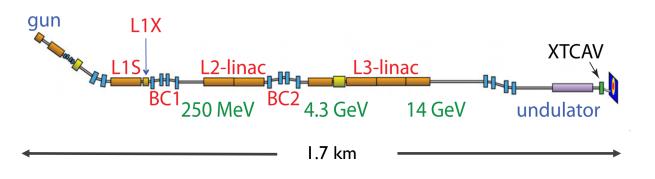
- High user demand → want to switch between custom user requests quickly
- High cost for unintended down-time → user time, scientific output
- Achieve challenging beam setups for new science goals

Bunches for two color FEL



A. Marinelli, et al., Nat. Commun. 6, 6369 (2015)

Particle accelerators are difficult to model and control



Interesting challenges for modeling / control

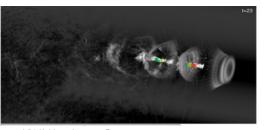
- Complex systems (nonlinear, large parameter spaces)
- Interacting subsystems
- Variety of diagnostics (e.g. beam images)
- Time-varying/ non-stationary behavior ("drift")

Strong incentives for improving system understanding and control

- High user demand → want to switch between custom user requests quickly
- High cost for unintended down-time → user time, scientific output
- Achieve challenging beam setups for new science goals

Even more challenging as we move to more complicated acceleration schemes (e.g. superconducting, plasma-based acceleration) and push to more extreme beam parameters

Fermilab



LBNL Visualization Group

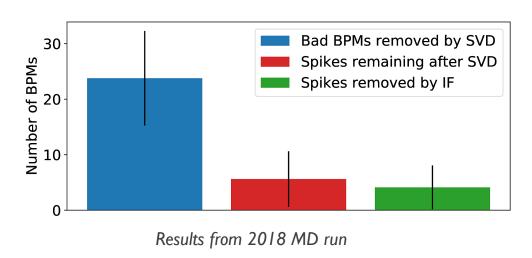
Major use cases for ML in particle accelerators

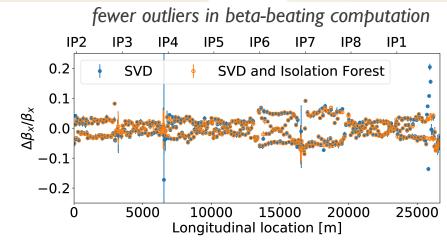
- Detecting / predicting unwanted changes or failures
- Getting more useful information out of complicated machine signals (e.g. images, waveforms)
- System control and optimization
- Fast, accurate system models
- Facilitate improved physics understanding of machine behavior
- → Will give examples of each of these

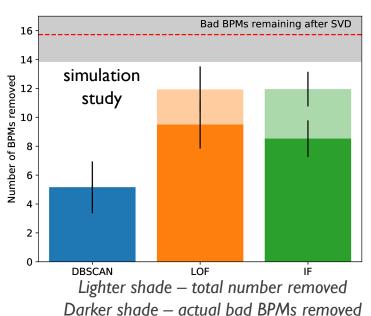
Anomaly Detection: identify bad BPM signals

SLAC

- Don't want to use faulty BPM signals in optics measurement and correction!
- Standard techniques (e.g. SVD) can remove most bad signals, but not all
- Various clustering algorithms have been applied to LHC BPMs (DBSCAN, Isolation Forests, Local Outlier Factor)







Balance for different accelerator needs

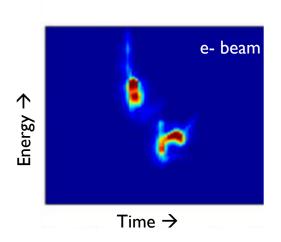
Diagnostic Analysis / Reconstruction

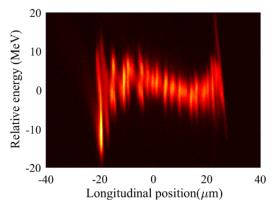
SLAC

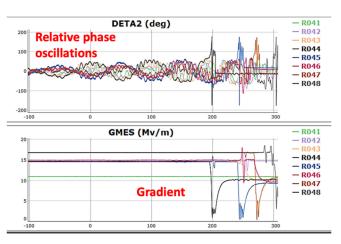
Complicated signals used in feedback control and experimental analysis (e.g. beam images, rf waveforms)

→ Can use ML to extract more useful information from these signals

→ NNs are particularly useful for this





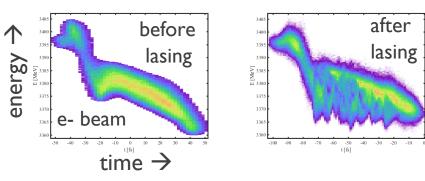


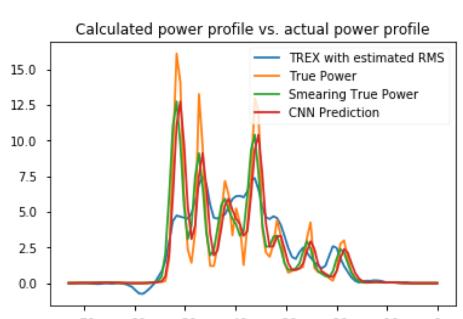
A. Marinelli, et al., Nat. Commun. 6, 6369 (2015)

J. Qiang, et al., PRSTAB30, 054402, 2017

Diagnostic Analysis / Reconstruction: X-Ray power profile from e- beam image

SLAC





Free Electron Laser: e- beam loses energy to photon beam

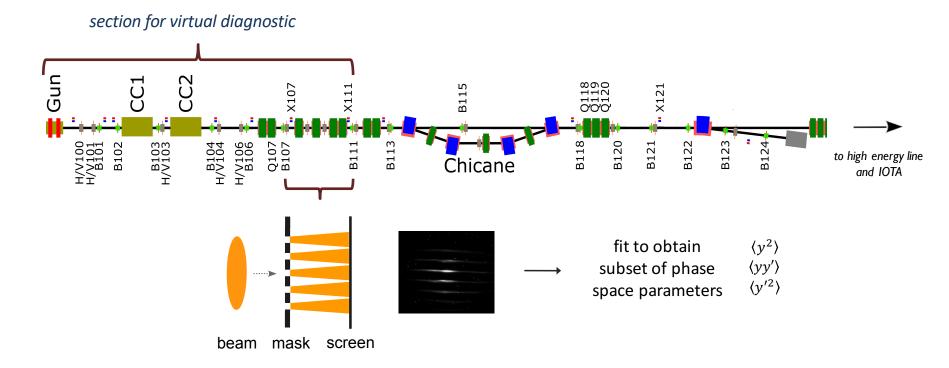
e- beam image before/after lasing process provides critical information to users about photon beam

- relies on slow, iterative reconstruction algorithm to get X-ray power profile
- iterative method doesn't work well for all regimes (e.g. in saturation)

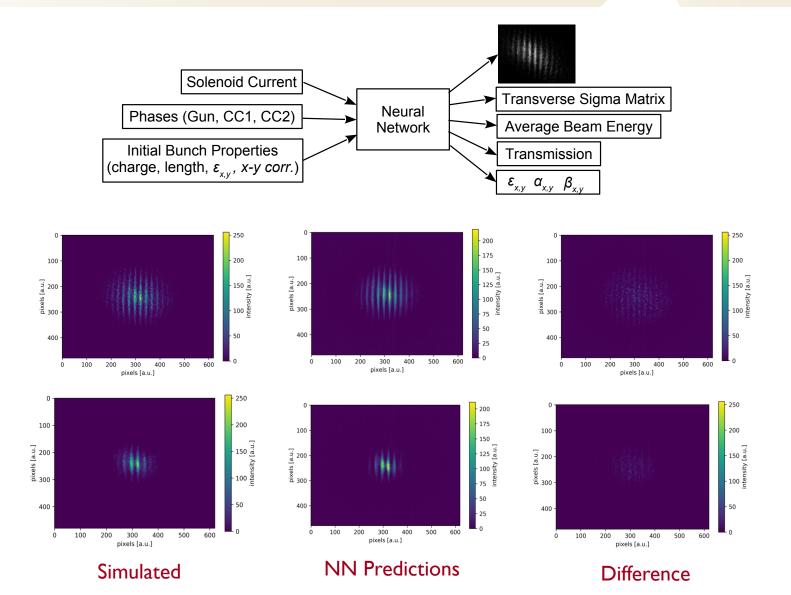
Instead: use convolutional neural net to get accurate predictions quickly

Some diagnostic measurements are slow + destructive to the beam

→ can we use ML to get a non-destructive prediction of what these diagnostics would show?



e.g. at FAST (Fermilab) multi-slit emittance measurements took 10-15 seconds in each plane



Real diagnostic not always available:

- slower update rate than desired
- destructive, cannot use during user operations
- not sensitive in entire operating range
- moved to another location (e.g. cost constraints)

→ LCLS-II XTCAV

FACET-II XTCAV

2016 study: can use archive data to learn correlation between fast and slow diagnostics

First Bunch X-ray Generation: Compressor Magnetic Undulator First Linea (BC1) Second LINAC Acceleration (LINAC) Third LINAC Section (L2) Section (L3) Section (L1) Compressor two electron (BC2) with Double bunches at Slotted Foil (DSF) two ultra short high-energy electron bunches producing 200+ electron bunch and x-ray fast monitors 20+ variables recorded for each shot From Gas Monitor (Optical/TOF) Magnetic Detectors (GMDs) Deflector Dipole (DUMP) Cavity (XTCAV)

A. Sanchez-Gonzalez, et al. https://arxiv.org/pdf/1610.03378.pdf

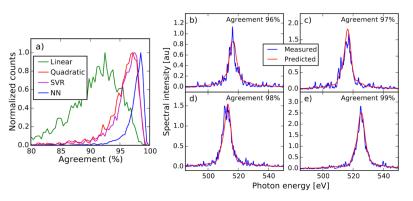
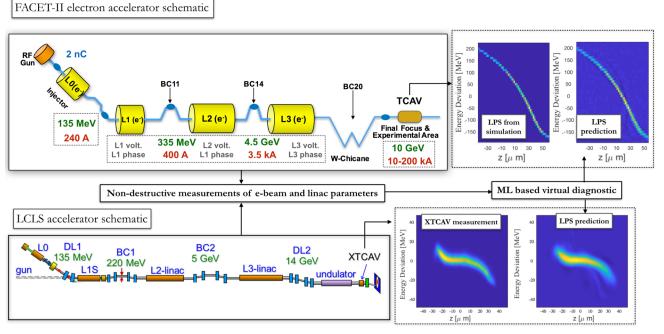


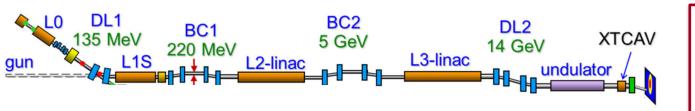
FIG. 4. Spectral shape prediction for a single pulse. (a) Histogram of agreements between the predicted and the measured spectra for the test set using the 4 different models. (b-e) Examples of the measured and the predicted spectra using a neural network to illustrate the accuracy for different agreement values.

Real diagnostic not always available:

- slower update rate than desired
- destructive, cannot use during user operations
- not sensitive in entire operating range
- moved to another location (e.g. cost constraints)



Preliminary simulation study for FACET-II and experimental study at LCLS looks encouraging

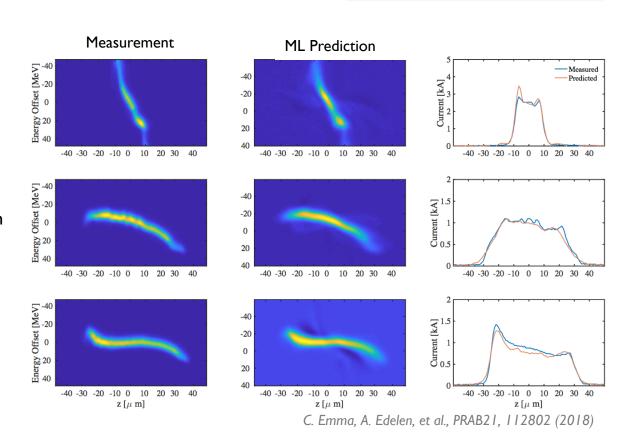


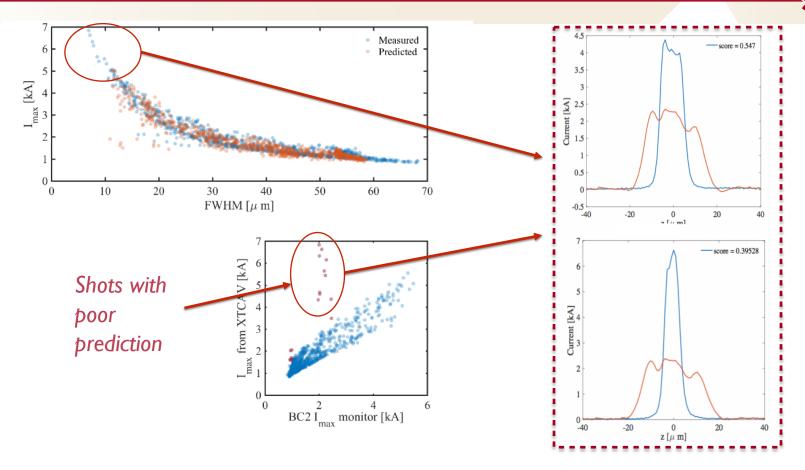
Two parameters scanned:

LIs phase from -21 to -27.8 deg

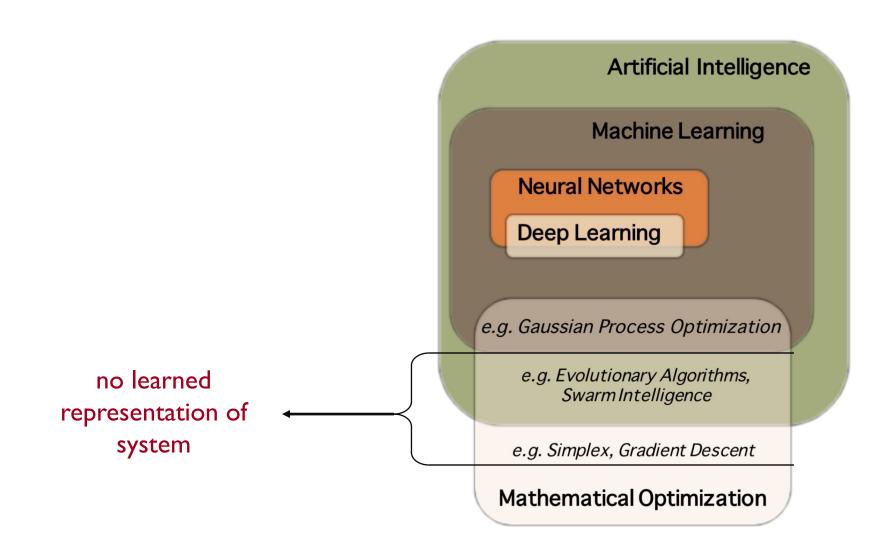
BC2 peak current from I-7 kA

- 5 inputs
 - LIS and LIX amplitude, LIS phase
 - BC1&2 peak current
- Large sweep of phase space from 2D scan
- Ongoing dedicated effort in FACET-II to provide LPS information to their users



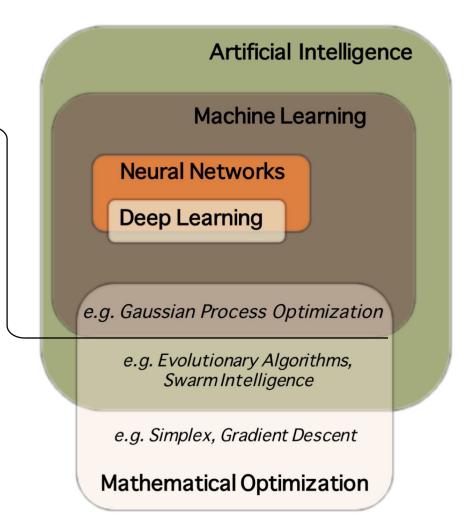


- For some shots XTCAV and BC2 current readings aren't consistent → results in poor prediction
 - → ML model is only as good as the input it's given
 - → Flagging when to trust the prediction is important (e.g. tag bad shots)



Can also use ML to exploit learned representations of the system to inform the search

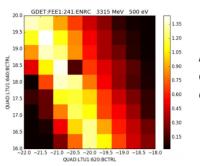
(model predictive control,
Bayesian optimization,
deep reinforcement learning,
warm starts from ML models,
inverse ML models)



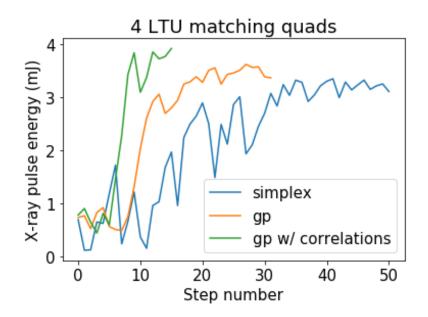
Control / Tuning: Bayesian Optimization

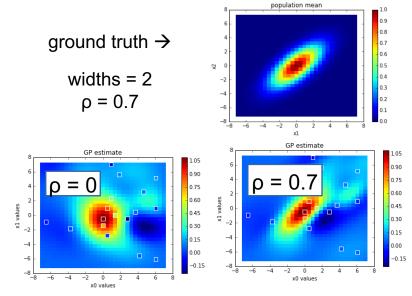
SLAC

- Bayesian Optimization with Gaussian Processes (GP) applied to FEL tuning at LCLS
 - → tune quadrupole magnets to maximize FEL pulse energy
- Incorporated physics correlations into kernel for GP model
- Recently the same tools were applied to SPEAR3 with minimal overhead (a few days of work)



Measured FEL: adjacent quads are anticorrelated





Kernel correlation improves regression on the **same samples**

Control / Tuning: Safety Constraints

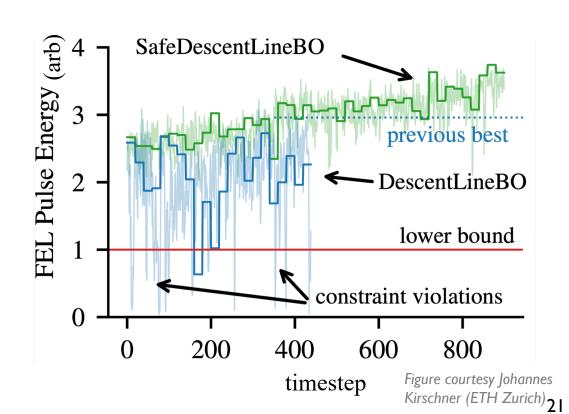
SLAC

Don't just want to maximize FEL energy \rightarrow we have other requirements

- pulse energy briefly drops below certain level → angry users!
- beam losses go above a certain threshold → damage machine!

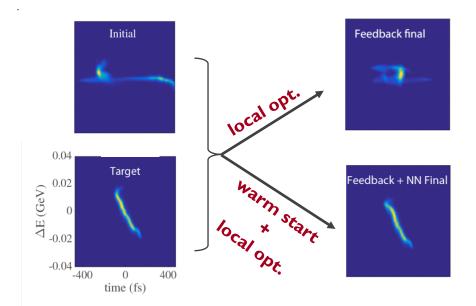
Add these requirements as safety constraints

Has been developed by ETH Zurich and tested experimentally at SwissFEL



Control / Tuning: warm start with inverse models

- Often have to switch between user requests quickly
- Use inverse model to give rough suggested
 settings → then fine-tune with local optimizer
- Use a NN to map image to settings

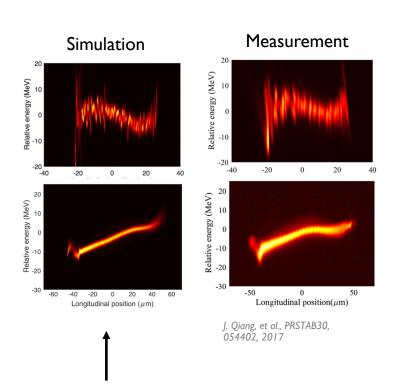




Local optimizer alone was unable to converge → able to converge after initial settings from neural network

SLAC

Accelerator simulations that include nonlinear + collective effects are powerful tools...



"10 hours on thousands of cores at the NERSC"

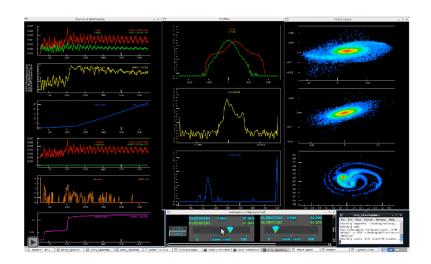
... but they are computationally expensive and don't always match the machine well

Prohibits use as an online model (e.g. diagnostic / control applications)
Impedes offline start-to-end optimization and control prototyping
Often takes much effort to replicate real machine behavior

SLAC

Accelerator simulations that include nonlinear + collective effects are powerful tools...

... but they are computationally expensive and don't always match the machine well



e.g. GPU-accelerated HPSim at LANSCE (based on PARMILA)

One approach: faster modeling codes

Simpler models (tradeoff with accuracy)

analytic calculations e. g. J. Galambos, et al., HPPA5, 2007

Parallelization and GPU-acceleration of existing codes

HPSim/PARMILA X. Pang, PAC13, MOPMA13
elegant I.V. Pogorelov, et al., IPAC15, MOPMA035

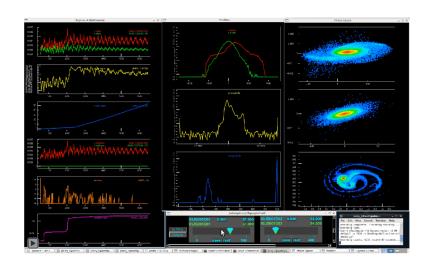
Improvements to modeling algorithms

Lorentz-boosted frame J.-L. Vay, Phys. Rev. Lett. 98 (2007) 130405

SLAC

Accelerator simulations that include nonlinear + collective effects are powerful tools...

... but they are computationally expensive and don't always match the machine well



e.g. GPU-accelerated HPSim at LANSCE (based on PARMILA)

One approach: faster modeling codes

Execution often still isn't so fast (sec – mins)

Can require HPC resources

Still not easy to replicate machine behavior!

SLAC

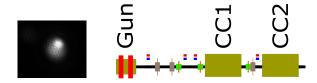
Accelerator simulations that include nonlinear + collective effects are powerful tools...

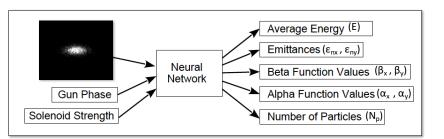
... but they are computationally expensive and don't always match the machine well

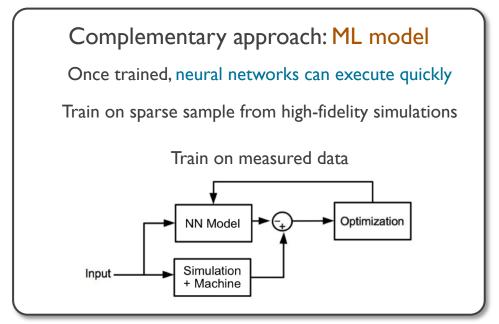
Initial examples from FAST injector at Fermilab:

PARMELA with 2-D space charge: ~ 20 minutes

Neural network: ~ a millisecond





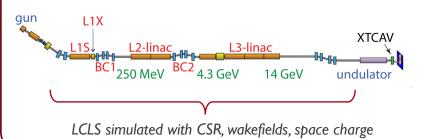


All mean absolute errors between 0.9% and 3.1% of the parameter ranges

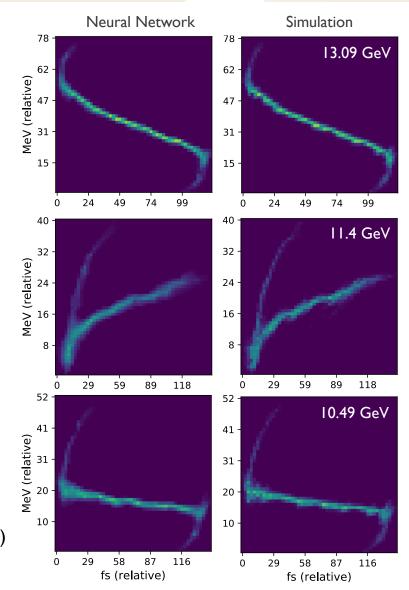
SLAC

Wide scan of 6 settings for LCLS in Bmad

Variable	Min	Max	Nominal	Unit
LI Phase	-40	-20	-25.1	deg
L2 Phase	-50	0	-41.4	deg
L3 Phase	-10	10	0	deg
L1 Voltage	50	110	100	percent
L2 Voltage	50	110	100	percent
L3 Voltage	50	110	100	percent



- Trained neural network to predict 25 scalar outputs $(\sigma_{x,y,z} \in \mathcal{E}_{x,y} \mid \sigma_{x',y'} \mid \sigma_E \mid etc...)$ and longitudinal phase space at the undulator entrance
- Good agreement with simulation (and 106x faster execution)

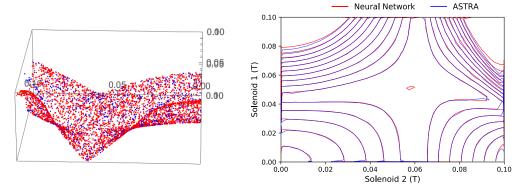


Faster, more accurate machine models: LCLS-II Injector

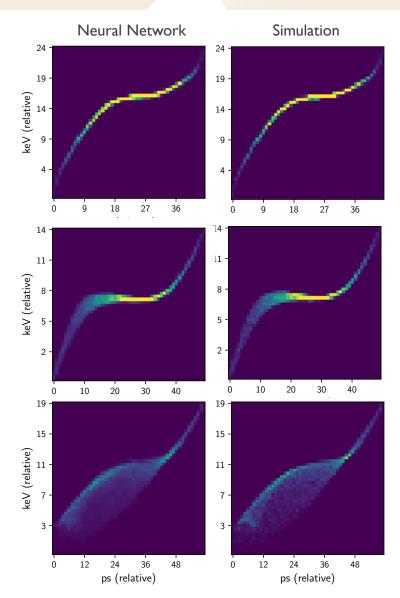
W	<u>'ide</u>	scan	of	5	settings	in	AST	RA

Variable	Min	Max	Nominal	Unit
Gun Phase	-10	10	-6.6	deg
Solenoid I	0	0.1	0.06	Т
Solenoid 2	0	0.1	0.03	Т
Buncher Amplitude	0	2	1.80	MV/m
Buncher Phase	-100	-60	-80.3	deg

- Trained NN to predict 12 scalar outputs and longitudinal phase space (LPS)
- NN in good agreement with simulation (and 105x faster)



Example σ_x surface from 2D scan, verified with ASTRA



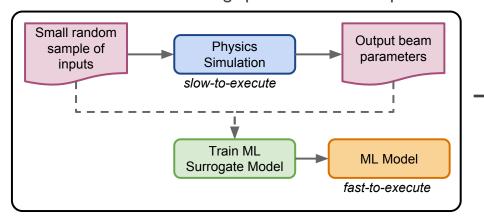
How reliably can we use these models with multi-objective optimization?

Beam

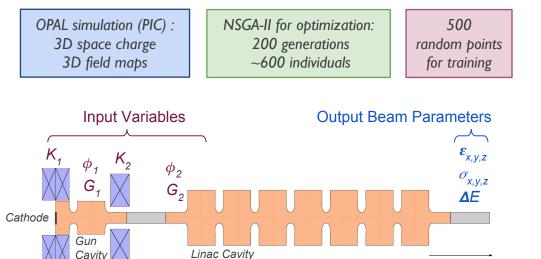
Propagation

SLAC

Generate ML Model using Sparse Random Sample

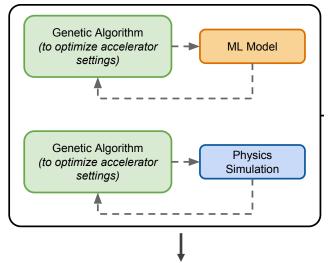


Test Case with Existing Data: Argonne Wakefield Accelerator Injector

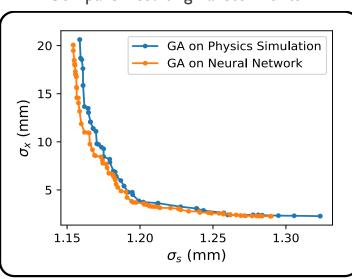


Solenoids

Run GA on ML Model and Physics Simulation



Compare Resulting Pareto Fronts



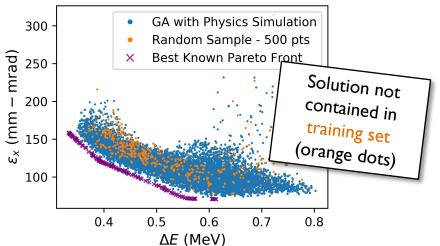
How reliably can we use these models with multi-objective optimization?

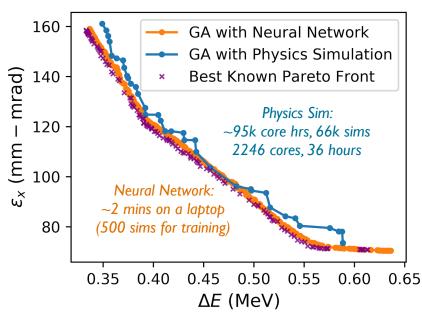
SLAC

Examined with PIC sims of the AWA injector:

MOGA solution with 6 inputs, 7 objectives required ~130x fewer simulation evaluations

Surrogate model has 10⁶ x faster execution





In terms of time-to-solution:

~6.4 mins on 8 cores to make 500-point training data

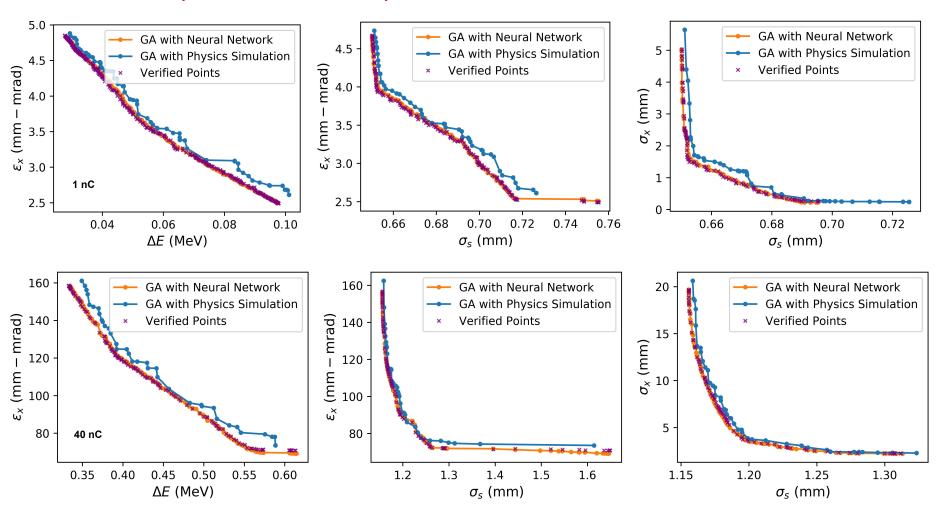
~10 minutes to train on a laptop

~2 minutes to do optimization on a laptop

How reliably can we use these models with multi-objective optimization?

SLAC

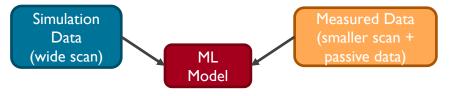
Similar results for other 2D Pareto fronts...



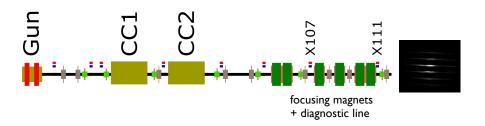
Can we bridge the gap between our simulations and empirical machine behavior?

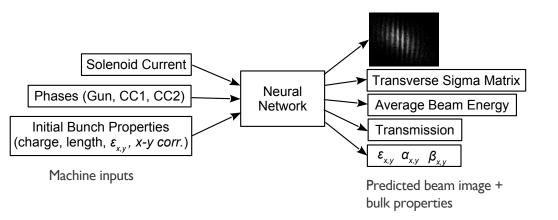
SLAC

Poor agreement between physics simulation and measured data Can't do a full parameter scan on machine (cost / time)



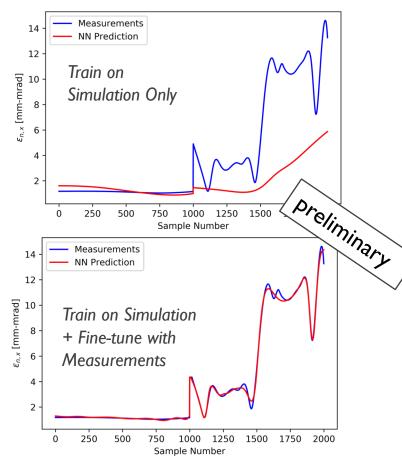
Can we pre-train in simulation and update with measured data?





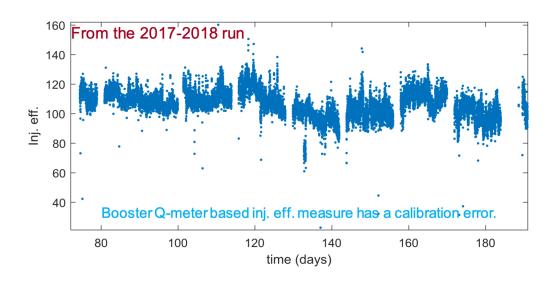
Initial results from study of injector systems look promising

→ need to investigate strategies for doing this routinely and at larger scale



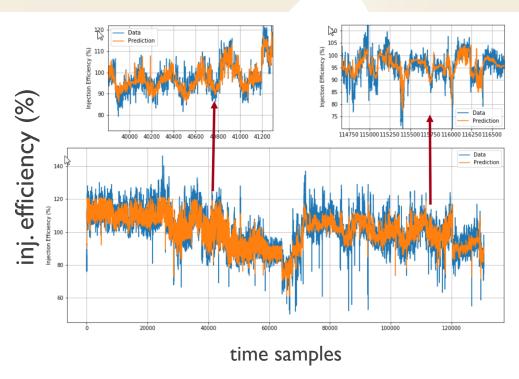
Improve system understanding: learn about machine sensitivities

 SPEAR3 storage ring injection efficiency varies → trajectory feedback settings are frequently optimized to compensate



Improve system understanding: learn about machine sensitivities

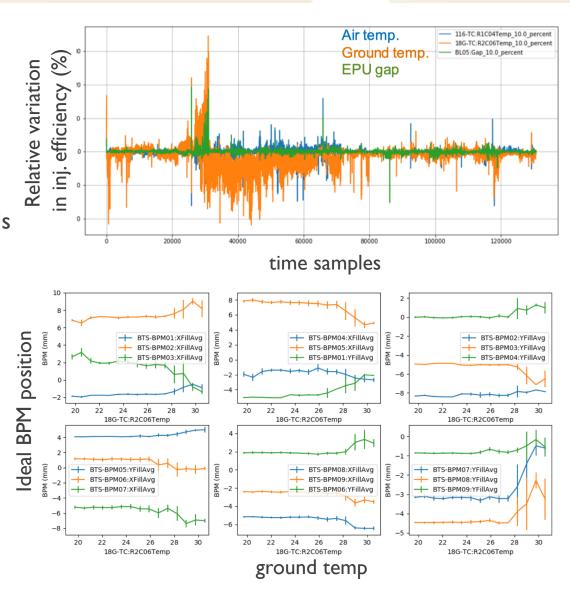
- SPEAR3 storage ring injection efficiency varies → trajectory feedback settings are frequently optimized to compensate
- Use NN model to discover what is driving the change (i.e. find unanticipated parameter dependencies)



Improve system understanding: learn about machine sensitivities

- SPEAR3 storage ring injection efficiency varies

 trajectory feedback settings are frequently optimized to compensate
- Use NN model to discover what is driving the change (i.e. find unanticipated parameter dependencies)
- → Found ground temperature was a significant factor
- → Can now use to predict ideal orbit given ground temperature

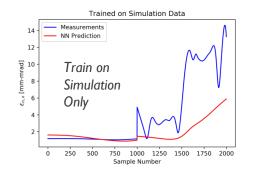


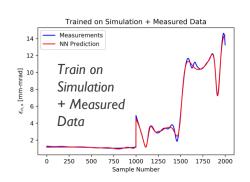
Major Use Cases for ML in Particle Accelerators

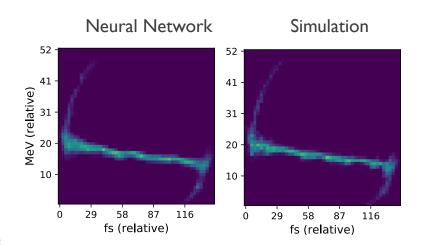
- Detecting / classifying / predicting unwanted changes or failures
 - failing beam position monitors, cavity quenches
- Getting more useful information out of complicated machine signals
 - images, waveforms, etc.
- System optimization and fast experiment setup
 - need solutions for standard setups and previously unseen setups
- System modeling for use in design, online modeling, and model-based control
- Facilitate improved understanding of factors that impact performance
 - physics insight, machine sensitivities, hidden variables etc.
- High throughput data analysis / rejection (e.g. LCLS user side)

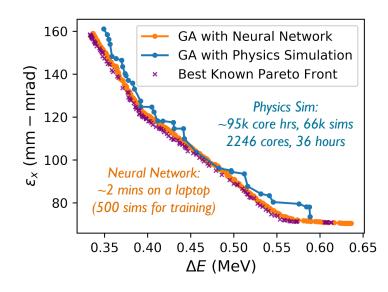
Many Open Questions to Address...

- Robustness / model uncertainty e.g. flag when not to trust ML algorithm – switch to physics models or standard control (e.g. outside training range, aberrant conditions)
- Strategies for online retraining adapt to new configurations / part replacements / drift
- How best to combine simulation and measured data
- Scaling to higher dimension + problem complexity, wider range of conditions
- Which combinations of methods (ML and non-ML) will work best for different kinds of problems









• Growing community, three recent workshops:

Intelligent Controls for Particle Accelerators Jan. 2018 at Daresbury Lab

Agenda/Talks: https://tinyurl.com/y9rg3uht

Machine Learning for Particle Accelerators

Feb. 2018 at SLAC, Feb. 2019 at PSI Agenda/Talks '18: https://tinyurl.com/y988njbl Agenda/Talks '19: https://tinyurl.com/y9bc9lq7

- ML is a complementary approach to existing techniques and is extremely flexible
- Many opportunities to use ML to improve accelerator performance
- Relatively simple methods can be readily put to use
- **ML is not a panacea!** good workflows + data are essential, and many simpler techniques are not put to full use by the community (e.g. model predictive control with simple models, LiTrack virtual diagnostic by A. Scheinker and S. Gessner)
- Still exploring the boundaries of usefulness/reliability and tradeoff with time investment

Acknowledgments to many colleagues / collaborators involved in ML examples shown!

SLAC

Daniel Ratner (SLAC)

Xiaobiao Huang (SLAC)

Joe Duris (SLAC)

Claudio Emma (SLAC)

Nicole Neveu (SLAC)

Christopher Mayes (SLAC)

Xinyu Ren (SLAC)

Xiao Zhang (SLAC)

Jane Shtalenkova (SLAC)

Adi Hanuka (SLAC)

Hugo Slepicka (SLAC)

Faya Wang (SLAC)

Lauren Alsberg (SLAC)

Dorian Bohler (SLAC)

Glen White (SLAC)

Dylan Kennedy (SLAC)

Tim Maxwell (SLAC)

William Colocho (SLAC)

Matt Gibbs (SLAC)

Alex Halavanau (SLAC)

Eric Hemsing (SLAC)

Aashwin Mishra (SLAC)

Alan Heirich (SLAC)

Yuantao Ding (SLAC)

Gabriel Marcus (SLAC)

Alberto Lutman (SLAC)

NATIONAL ACCELERATO LABORATORY

PAUL SCHERRER INSTITUT

Fermilab

Jonathan Edelen (RadiaSoft, LLC)

Dean "Chip" Edstrom Jr. (Fermilab)

Andreas Adelmann (PSI)

Matthias Frey (PSI)

Yannick Huber (PSI/ETH Zurich)

Raffaele Campanile (INFN)

Alex Scheinker (LANL)

Pietro Musumeci (UCLA)

Eric Cropp (UCLA)

Paul Denham (UCLA)

Sandra Biedron (UNM)

Jinhao Ruan (Fermilab)

Philippe Piot (Fermilab / NIU)

Presentation also included work from:

Anna Solopova (Jlab)

Elena Fol (CERN)

Johannes Kirschner (PSI/ETH Zurich)