Liu Shuhui
TUPB054
Superconducting β=0.40 half-wave cavity design for CiADS
434
A 325 MHz, optimal beta = 0.40 niobium half-wave resonator (HWR) called HWR040 for the superconducting driver linac of the China initiative Accelerator-Driven subcritical System (CiADS) has been designed and analysed at the Institute of Modern Physics, Chinese Academy of Sciences (IMP, CAS). The linac requires 60 HWR040s to accelerate protons from 45 MeV to 175 MeV. This paper mainly presents the multi-physics studies of the HWR040, include electromagnetic optimization, mechanical structure design and heat transfer simulation of the cavity, to predict the behaviour of the cavity under practical operating process.
Paper: TUPB054
DOI: reference for this paper: 10.18429/JACoW-LINAC2024-TUPB054
About: Received: 20 Aug 2024 — Revised: 22 Oct 2024 — Accepted: 22 Oct 2024 — Issue date: 23 Oct 2024
Simulation and measurement studies of longitudinal acceptance based on the CAFe superconducting linac
The accurate measurement of longitudinal beam parameters is paramount for controlling beam losses in high-power superconducting linac accelerators, particularly for low-energy beams which are significantly affected by the compensative challenges of nonlinear effects and pronounced space charge effects. In this context, systematic simulation and experimental studies of longitudinal acceptance have been performed based on the CAFe linac, employing techniques of phase and energy scanning. This paper provides a detailed description of the principles of the longitudinal acceptance measurement and presents an analysis of preliminary experimental results obtained from the CAFe linac. It was observed that the experimental longitudinal acceptance of the accelerator was reduced compared to the simulation predictions. Key factors such as transverse orbit deviations and RF phase errors are examined, and a thorough analysis of these discrepancies is discussed in the paper.