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Abstract

Particle accelerators like CLEAR (CERN Linear Electron
Accelerator for Research) are essential tools for advancing
various scientific fields. Automating their operation to en-
sure stability and reproducibility is crucial for future large-
scale projects. This paper explores the first steps toward
autonomous control of the CLEAR beamline, focusing ini-
tially on beam steering and advancing to complex tasks like
quadrupole alignment, vital for operational stability. Rein-
forcement Learning (RL) agents that adapt in real-time via
beam screens measurements were trained and tested. The
approach was optimized for sampling efficiency, and to avoid
the high cost and invasiveness of traditional data collection
schemes in accelerator environments. The method enables
single-shot optimization for real operations, reducing the
need for manual intervention. Results show that after a few
hours of training, the method is effective for single-step
corrections all the way to the end of the CLEAR beamline.
The already proven advantages of this technique is driving
further development by the CLEAR research team.

INTRODUCTION

Particle accelerators are complex machines supporting
applications from fundamental physics to industry and
medicine [1]. Thousands are currently operational world-
wide, with about half employed for industrial applications,
such as material processing and sterilization, and about a
third used in hospitals [2]. These facilities are critical to
modern science and technology, driving advances in both
research and healthcare.

Maintaining optimal accelerator performance presents
significant challenges. Beam steering and alignment must
be achieved with high precision to ensure stable operation,
but manual tuning by experts becomes increasingly time-
consuming and less reproducible as systems grow in scale
and complexity.
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Future facilities, employing high-energy LINACs in high-
energy colliders, will demand unprecedented beam qual-
ity and stability, making automation essential. Even small
drifts or imperfect corrections can severely degrade beam
performance. To address these challenges, intelligent, au-
tomated control systems are being actively developed. Ma-
chine Learning (ML) techniques, particularly Reinforcement
Learning (RL), are being explored to improve efficiency, pre-
cision, and reproducibility in beam tuning [3,4]. This work
presents an RL-based autonomous control system for beam
steering and orbit alignment at the CERN Linear Electron
Accelerator for Research (CLEAR) [5].

STATE OF THE ART

Beam steering is a control task that can often be well
approximated using a linear lattice model [6]. This allows
for the application of analytical algorithms and optimization
techniques. While the first-order behavior of an ideal beam-
line can be simulated with relative ease, accurately modeling
lattice imperfections remains a significant challenge. Such
imperfections are difficult to measure accurately and even
harder to replicate in simulation, which limits the effec-
tiveness of purely model-based correction schemes. Con-
sequently, analytical orbit correction methods may fail to
provide satisfactory single-shot corrections due to discrep-
ancies between the model and the real measurements.

A widely used traditional method for orbit correction is
one-to-one steering, in which the beam is sequentially re-
centered at each beam position monitor using the preceding
upstream corrector magnet [7-11]. One-to-one steering
is valued for its simplicity and does not require a detailed
beam dynamics model, making it suitable for local orbit
correction. However, this approach can produce non-optimal
or "zig-zag" beam orbits that deviate from the ideal trajectory.
Furthermore, local correction methods, typically, use higher
corrector strength and results in higher order distortions
which effectively spoil beam quality.

THPMO032
2751

@2z Content from this work may be used under the terms of the CC BY 4.0 licence (© 2025). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.




16th International Particle Accelerator Conference, Taipei, Taiwan

JACoW Publishing

ISBN: 978-3-95450-248-6

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2025-THPM032

MC6.D13 Machine Learning

2751

THPM: Thursday Poster Session: THPM

THPM032

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2025). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.


@2z Content from this work may be used under the terms of the CC BY 4.0 licence (© 2025). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

16th International Particle Accelerator Conference, Taipei, Taiwan

ISBN: 978-3-95450-248-6

Modern requirements, such as achieving single-shot opti-
mization across the whole accelerator, call for more holistic
approaches. Rather than correcting locally, an optimal deci-
sion must consider the global state of the beam across the
entire machine. This need for global, coordinated correction
motivates the exploration of advanced, data-driven control
strategies.

In this context, RL has emerged as a promising candidate
for autonomous beam control—especially in large-scale ac-
celerators, where the high number of variables and their
nonlinear effects lead to an explosion of the parameter space.
RL is a branch of machine learning in which an agent learns
optimal control policies through interaction with its envi-
ronment and feedback in the form of rewards, rather than
explicit programming. Recent advancements in deep RL
have demonstrated remarkable performance in mastering
high-dimensional control problems across various fields, in-
cluding in the particle accelerator community [12—-15]. Pre-
liminary studies suggest that RL-based methods can manage
the high-dimensional and dynamic nature of accelerator op-
timization problems, enabling more autonomous and robust
operation. Given RL’s demonstrated ability to address com-
plexity and uncertainty, it is a natural fit for the beam steering
problem, where traditional approaches may fall short.

CERN LINEAR ELECTRON
ACCELERATOR FOR RESEARCH

CLEAR is a 200 MeV electron LINAC designed as a flexi-
ble test facility for accelerator R&D [16]. Its modular layout
supports a wide range of beam energies, intensities, and con-
figurations, enabling a diverse experimental programme [17].
Due to this versatility, identical beam conditions are rarely
repeated, rendering fixed reference orbits and precomputed
steering solutions impractical. Instead, beam alignment is
typically performed manually for each setup, with opera-
tors adjusting magnet settings based on feedback from beam
position monitors until acceptable orbit quality is achieved.
This manual tuning process is time-consuming, requires
expert knowledge, and may not always yield optimal align-
ment—particularly under evolving experimental conditions.
In addition, unlike large accelerator complexes, CLEAR
lacks a fully instrumented continuous orbit feedback system.

CLEAR is a suitable place to test an RL-based solution
to autonomously steer the beam in real time, adapting dy-
namically to the varying machine state. On the other hand, a
significant limitation of the facility is the sparse availability
of non-invasive, real-time Beam Position Monitor (BPM)
coverage along the full beamline [17]. As a result, destruc-
tive screen monitors, such as Yttrium Aluminum Garnet
(YAG) screens or optical transition radiation (OTR) foils,
had to be used to capture transverse beam profiles and mea-
sure the beam position [18].

METHODOLOGY

Beam trajectory control in accelerators is achieved using
dipole steering magnets to compensate for misalignments in
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focusing elements and beamline components. A good con-
trol of the beam trajectory is essential to preserve emittance
and maintain beam quality [6, 19]. An RL-based beam steer-
ing system was developed using a custom Gymnasium envi-
ronment [20], interfaced with the Stable-Baselines3 (SB3)
library [21]. The agent operates in a continuous action space,
with each action representing an adjustment to the normal-
ized current of a steering magnet. Observations consist of
measured beam positions obtained from the screens. The
agent interacts with the environment in a closed loop: at
each iteration, it computes magnet adjustments, observes
the outcome on beam position, and updates its policy based
on the reward.

The Twin Delayed Deep Deterministic Policy Gradient
(TD3) algorithm [22] was selected for its robustness and
improved training stability, benefiting from clipped double
Q-learning, target policy smoothing, and delayed policy
updates [23].

Hardware control is handled via CERN’s JAPC and Py-
JAPC interfaces [24], enabling real-time control of magnet
currents and diagnostic devices. All current commands are
clipped within predefined safety bounds to protect the equip-
ment.

Due to their destructive effect on the beam, screens are
used in a sequential measurement strategy. All required
screens are inserted at the start of an episode. At each time
step, the beam strikes the most upstream screen, which is
then retracted before the subsequent pulse. This process
continues until all screens are retracted, allowing one beam
profile per pulse without insertion delays. This sequential
imaging strategy is devised for minimizing the impact from
the destructive nature of screens.

At each step, the screen image is processed to calculate the
position of the beam centroid. The centroid of the beam in-
tensity distribution is computed to infer beam position, and
to convert from pixel coordinates to real-space positions,
accounting for camera geometry, a homography-based trans-
formation is applied [25]. The result is that for each screen
insertion, one obtains an estimate of the beam’s transverse
offset at that location. Once all the screens are extracted,
a scalar reward is computed based on the deviation from
the target orbit on each screen, encouraging centering and
minimizing positional error.

Each interaction with the environment is stored by the
agent as a transition tuple (s,a,r,s’) in a replay buffer,
where s is the current state (i.e. the observed beam posi-
tions), a is the action taken (i.e. the applied magnet current
adjustments), r is the received reward (quantifying beam
alignment accuracy), and s’ is the resulting next state (the
updated beam position observation). During training, mini-
batches of these transitions are sampled from the buffer, and
the policy is updated via gradient descent to minimize the
temporal-difference error between the predicted and target
Q-values. The agent’s goal is to improve its policy so that
future actions will yield higher rewards.

Episodes terminate when all screens have been used or
an early stopping condition is met. Upon reset, screens
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Figure 1: Visual comparison of the beam orbit before (top)
and after (bottom) correction for the horizontal plane. Signif-
icant misalignment relative to the reference axis (red dashed
lines) is observed prior to correction, while improved cen-
tering achieved in single-shot correction.

are reinserted and magnet settings randomized within safe
limits. The agent continues training over multiple episodes,
refining its steering policy iteratively. This approach was
implemented in a single axis of the transverse plane but can
be extended to both axes with minimal modifications.

RESULTS AND OUTLOOK

The results in Fig. 1 demonstrate the effectiveness of the
proposed RL-based correction method for the horizontal
plane. Visual comparison shows a marked improvement in
beam alignment relative to the reference axis, confirming
the impact of the developed approach.

The training performance is summarized in Fig. 2. A
rapid decline in episode lengths (top) and a steady improve-
ment in final reward values (bottom) illustrate fast policy
convergence and stable learning behavior. The reported re-
wards correspond to those obtained from the initial beam
orbit (following random corrector initialization) and from
the corrected orbit after the agent’s action.

After only a few tens of episodes, the agent learned to
reliably correct random initial orbits in a single step, surpass-
ing the reward threshold. This demonstrates not only the
efficiency of training but also the agent’s ability to generalize
to varying machine conditions during deployment.

Training convergence was typically achieved within ap-
proximately two hours of run time, validating the robustness
and practicality of the method for routine accelerator op-
eration. An autonomous correction of beam trajectories
was achieved within a few pulses, while respecting machine
safety constraints and instrumentation limits. This resulted
in a reproducible, software-in-the-loop system that progres-
sively refined beam alignment over successive iterations,
outperforming, for instance in speed, manual tuning and
static correction algorithms. The deployment of an RL con-
troller led to improved consistency and speed in orbit recov-
ery, even under varying beam parameter conditions, thus
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Figure 2: Training progress of the RL agent. Episode length
(top) decreases as the agent learns to complete the steering
task more efficiently. Reward (bottom) with final values
(red) consistently exceeding the defined threshold (dashed
line).

ensuring reproducible operating conditions with minimal
downtime.

Beyond orbit steering, similar RL-based strategies could
be adapted for targeting other beam properties, such as min-
imizing beam size, controlling beam shape, or maximizing
transmission efficiency. Promising preliminary results have
also been observed when applying similar techniques to
quadrupole alignment tasks.

Despite the encouraging results, some limitations were
identified. The primary diagnostic used—destructive screen-
based imaging—required mechanical insertion and removal,
introducing latency and disrupting normal beam operation.
Consequently, real-time, continuous feedback was not possi-
ble during routine runs, as the agent could only train and act
in dedicated measurement modes. Future work will focus
on integrating non-invasive diagnostics, such as BPMs, into
the RL environment. Access to fast, non-destructive feed-
back would enable in situ training during standard operation,
significantly accelerating learning and allowing real-time
corrections without beam interruption. Additionally, future
efforts will evaluate the center position of the screen using
an in-vacuum reference Structured Laser Beam, providing a
more stable and precise alignment baseline [26].
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