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Abstract
Accurate and stable beam parameters are crucial for the

success of particle accelerator-based experiments. Tradi-
tional methods for measuring beam parameters, however,
often rely on invasive techniques that can disrupt experi-
ments. This paper presents an initial step for obtaining a
novel, non-invasive machine learning-based approach for
predicting beam energy using parasitic measurements, en-
abling accurate real-time prediction without interference.
The method employs a predictive model optimized for one-
step-ahead forecasting and uses time-series data decompo-
sition to handle complex beam energy dynamics, with re-
cursive prediction strategies allowing it to anticipate future
variations autonomously. Preliminary results from experi-
ments at the CLEAR accelerator demonstrate the model’s
ability to capture both slow trends and rapid energy shifts,
and adapt to diverse experimental needs. These findings lay
the foundation for future studies, emphasizing the potential
of machine learning to measure beam energy and provide a
real-time, non-destructive alternative to conventional meth-
ods. This approach promises significant advancements in
accelerator-based applications, especially where destructive
techniques are impractical.

INTRODUCTION
Electron accelerators are crucial in fields like medical

imaging and materials science [1–4]. Their utility relies
on the delivery of a stable and well-characterized electron
beam, which is critical for generating high-quality and repro-
ducible data. Achieving such stability involves monitoring
various beam and system parameters. Some, such as beam
energy, are difficult to measure directly non-destructively
and often require invasive methods. Non-invasive signals,
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such as from RF systems, offer potential for indirect diag-
nostics. Given the wealth of data available from modern
accelerator systems and the complexity of modeling their
interdependencies explicitly, Machine Learning (ML) offers
a powerful tool for identifying relevant features and enabling
robust, real-time diagnostics.

This study explores using ML to predict these hard-to-
measure parameters, focusing on leveraging non-invasive
signals to estimate beam energy without disrupting opera-
tions. Early results show that ML, guided by accelerator
physics models, can reveal hidden correlations and enable
real-time monitoring. The predictive ability of these models
suggests a promising path for improving accelerator diag-
nostics adding a so-called virtual diagnostics, with the aim
to estimate key parameters without intrusive instrumenta-
tion [5].

ENERGY MEASUREMENTS AT CLEAR
A precise method for energy measurement in Linear Ac-

celerators (LINACs) uses a magnetic spectrometers to cal-
culate the particle momentum from trajectory curvature in a
magnetic field [6, 7]. It is highly reliable, usually invasive
and requires a dedicated beamline that can make it unsuit-
able for continuous or in-situ monitoring. requires At the
CLEAR facility, beam energy is typically measured in the
VESPER area using a dipole spectrometer with a scintillat-
ing screen [8, 9].

In particular, the beam energy is measured from the hori-
zontal beam position observed with an Yttrium Aluminum
Garnet (YAG) screen using a 1D Gaussian fit to extract spot
centroids.

The accelerator layout, shown in Fig. 1, indicates the loca-
tion of the reference spectrometer (VESPER) and other ex-
perimental areas [10]. This method provides high-resolution
energy measurements, but interrupts beam delivery to other
experimental test areas, meaning that the energy cannot be
monitored continuously during operation. To overcome this,
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Figure 1: CLEAR beamline layout showing key components and the three main test areas, including VESPER where data
were collected. The beam travels right to left, from the RF Gun through magnetic and RF elements to the experimental
stations.

we explore a non-invasive ML approach to predict beam en-
ergy using parasitic signals during operation. The problem
is framed as time series forecasting, with historical beam
energy and auxiliary system signals serving as input. A one-
step-ahead prediction framework is adopted in this study to
ensure simplicity and minimize error.

EXPERIMENTAL SETUP

At the CLEAR facility, a variety of signals were collected
to enable accurate machine learning–based beam energy
predictions. These signals were selected based on opera-
tional experience and physically linked quantities. Although
not all signals demonstrated an obvious correlation with
beam energy, their inclusion allows the model to uncover
non-obvious dependencies.

A training data-set was collected using direct beam en-
ergy measurements from VESPER in parallel with multiple
non-invasive signals, including RF parameters (input power,
reflected power, and phase from klystrons and accelerating
structures), laser parameters (UV energy before and after
transport from laser-lab to the photocathode), beam charge
measured by Integrating Current Transformers (ICT), and
magnet currents (solenoid and dipole currents).

Data was collected for 600-shots in continuous acquisi-
tion repeated 30 times, with buffer shots to accommodate
acquisition system limitations and ensure reliable offline
processing. Over 6 h of data were gathered, with a beam
repetition rate of 0.833 Hz.

DATASET ANALYSIS

To reduce dimensionality, Pearson correlation analy-
ses [11] were used to assess the relationships between the
measured variables and beam energy. Variables with an ab-
solute correlation less than 0.2 were removed, and redundant
variables with a mutual correlation greater than 0.9 within
the same signal group were filtered out, leaving only the
most representative ones.

Figure 2 displays the correlation matrix across all signal
categories. After filtering, 20 key parameters were retained
for model training (the variables reported in Fig. 2 both
bold and underlined). This approach balances comprehen-
siveness and efficiency, ensuring the ML model is trained
on meaningful, non-redundant inputs while preserving the
interpretability of the feature space.

Figure 2: The absolute Pearson correlation matrix, grouped
by category, shows correlations between study variables.
Beam energy correlations appear on the left; RF signals
are in the upper section, while laser parameters and beam
current are in the lower-left and lower-right, respectively.

METHODOLOGY
To achieve high accuracy in predicting beam energy, sev-

eral ML models were tested and optimized using Bayesian
Optimization (BO) [12]. Model performance was evaluated
using the coefficient of determination, 𝑅2, defined as:

𝑅2 = 1 −
∑𝑛

𝑖=1(𝑦𝑖 − ̂𝑦𝑖)2

∑𝑛
𝑖=1(𝑦𝑖 − ̄𝑦)2 . (1)

here, 𝑦𝑖 is the actual value, ̂𝑦𝑖 is the predicted value, and ̄𝑦 is
the mean of the actual values. The numerator represents the
Sum of Squared Errors (SSE), while the denominator is the
Total Sum of Squares (TSS), representing total variance.

The value of 𝑅2 ranges from −∞ to 1. A value of 1 means
perfect predictions, 0 means no better than using the mean
as a predictor, and a value less than 0 indicates poor fit or
overfitting with the model prediction performing worse than
using the mean as a prediction value.
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Table 1: Combined Table with Hyperparameter Search Space, Configuration, and Results for Selected Algorithms Using
BO

Model Hyperparameters Search Space Configuration 𝑅2
𝑁𝐷 𝑅2

𝐷
Linear Regression - - - 0.08 0.33
Random Forest n. of estimators [2, 500], step=1 496 0.05 0.34max depth [2, 100], step=1 67
SVR kernel {RBF, linear} linear 0.10 0.33C [0.1, 10] 0.017526
MLP n. of layers [1, 4], step=1 2

0.10 0.33
n. of hidden neurons { 2𝑛 }, 1 ≤ 𝑛 ≤ 9 (64, 256)
activation function {ReLU, Tanh} Tanh
batch size [32, 64] 32
learning rate [1e−5, 1e−3] 1e−3

LSTM n. of layers [1, 4], step=1 1

0.14 0.02
n. of hidden neurons { 2𝑛 }, 2 ≤ 𝑛 ≤ 6 4
learning rate [1e−5, 1e−3] 1e−3
batch size [32, 64] 32
weight decay [1e−2, 0] 0.00543

The core methodology involves training the model on
historical data, using the past 10 data points for both beam
energy and exogenous variables to predict the next beam
energy. A decomposition approach was used to simplify the
forecasting problem and improve performance [13], with a
sliding window of size 10 applied to the data. Each win-
dow was processed using a Fast Fourier Transform (FFT)
to decompose the time-series data into frequency compo-
nents [14,15]. A bandpass filter was used to isolate a specific
frequency range, which was then transformed back to the
time domain using an inverse FFT (IFFT). The relevant fre-
quency ranges are not fixed; instead, they are analyzed one by
one in a loop, to evaluate their individual contribution to the
signal. This filtering process was applied separately to each
data window, and the results were combined to reconstruct
the filtered signal for the entire dataset.

A variety of ML models were tested, including traditional
methods like Linear Regression [16], Random Forest [17],
and Support Vector Regression (SVR) [18], as well as neural
networks such as Multilayer Perceptron (MLP) and recurrent
architectures such as Long short-term memory (LSTM) [19].

RESULTS
The FFT frequency resolution depends on the time se-

ries length, sampling frequency (0.833 Hz), and number of
data points (10). Shorter time series result in coarser reso-
lution, limiting the number of frequency bands. Given 10
data points at the CLEAR sampling frequency, the signal
can be decomposed into a maximum of 6 frequency bands
due to resolution and Nyquist limits. The results in Table 1
show the hyperparameter, their search spaces, the selected
configurations, and corresponding model performance met-
rics. The performance metrics are presented as 𝑅2

𝑁𝐷, which
refers to the performance using non-decomposed data, and
𝑅2

𝐷, which indicates performance using decomposed data,
with 𝑅 defined in Eq. (1).

For all models except LSTM, decomposing the data into
6 frequency bands improves performance. This is a signifi-
cant result, especially considering that decomposition was
not factored into the model selection during the BO search.

LSTM models are designed to handle temporal dependencies
and so the limited past history (only 10 data points) limits its
potential. Nonetheless, optimization on decomposed data
significantly improved its performance giving comparable
results with the respect to other models.

Interestingly, the simple Linear Regression model, using
historical data for predicting the next beam shot, performed
similarly to more complex models, demonstrating its effi-
ciency.

CONCLUSION AND OUTLOOK
This study introduced a machine learning-based approach

for predicting beam energy at the CLEAR accelerator us-
ing non-invasive measurements. By combining time-series
analysis with signal decomposition, models were trained to
forecast beam energy without direct or destructive diagnos-
tics.

A key finding was that Linear Regression, when applied to
decomposed signals, performed similarly to more complex
models, offering promising prediction accuracy while being
fast and explainable. Future work will focus on improving 𝑅2

performance and testing different approaches. While initial
results are promising, further refinement is needed. Once
one-step-ahead predictions reach satisfactory accuracy, they
can be integrated into a closed-loop system for short-term
forecasting over multiple pulses.

This method holds potential for fields like medical accel-
erators, especially in proton therapy, where precise energy
control is crucial. Its non-invasive nature may make it ideal
for real-time monitoring in environments where direct mea-
surement is impractical [20,21]. The goal is to integrate this
system into a real-time feedback loop for stabilizing beam
conditions.
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