Fast Orbit Corrector Power Supply in MTCA.4 Form Factor for Sirius Light Source

Augusto F. Giachero, Gustavo B. Bruno, Lucas M. Russo, Daniel O. Tavares

Design Goals

- Correct small beam disturbances up to 1kHz;
- Digital current loop control;
- At least 8 channels for each module;
- Up to 30μrad deflection (@ 3GeV);
- Fit into a MicroTCA RTM slot (mid-size);

Requirements

- Small signal bandwidth of 10kHz;
- Maximum total power consumption of 36W;
- Current slew rate of 0.5A/ms (standard) and 0.375A/ms (45°-rotated);
- Total delay of 5μS;

Requirements

- Load resistance: 1Ω ;
- Load inductance: 3.5mH (standard) 6.2mH (45°-rotated);
- ±1A output capability per channel;
- Noise Spectral Density:

$$\frac{1.5\,\mu\text{A}}{\sqrt{\text{Hz}}}(f \ge 1\,\text{kHz}) \qquad \frac{1.5\,\mu\text{A}}{\sqrt{\text{Hz}}} \times \frac{1\,\text{kHz}}{f}(f < 1\,\text{kHz})$$

Electronics Design

Class AB power amplifier;

• 16 bits DAC, 16 bits* ADC;

• Buck converter (≥90%

efficient);

* 16 bit differential input ADC, but only the positive range is used.

Prototype Validation

- Buck efficiency measured at 92.5%;
- DAC and ADC digital interfaces tested;
- Short circuit protection working;

Prototype Validation (Noise)

Prototype Validation (Step Resp.)

 1.17Ω 5.9mH load

Magnet Bandwidth

Next steps

- Drive a real corrector magnet;
- Optimize buck converter loop compensation;
- Thermal stress tests;
- Inter-channel crosstalk.

Thank you!

