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@ Introduction to the microbunching instability



q SASE Free Electron Laser
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Self Amplified Spontaneous
Emission (SASE)

@ amplification, up to
saturation, of the
spontaneous emission

produced by the ebeam
entering in the undulator
@ requires high quality ebeam
with very high peak current ’W\g AAAATAVAYRg
(~ kA) MAVAVAVAVAYAVasd
@ typical bunch length in the
1-100 fs VW~
@ usually poor longitudinal Incoherent emission: * Coherent emission:
coherence (temporally and slecrons andomly phased et wavelengih

spectrally spiky emissions) [B.W.J. McNeil & N.R. Thompson, Nat. Photon. 239 (2010)]



&) Seeded FEL
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Use of external seed laser
— control the distribution of the electrons
within the bunch
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Drawback:

Benefits of a seeded FEL:
o final FEL pulses inherit
properties of the seed

@ improvement of temporal
coherence of FEL pulses

@ control of time duration and
bandwidth

o low arrival time jitter

@ reduction of undulator chain
to reach saturation

@ no seeding sources at very short wavelength range

@ spectral properties sensitive to the ebeam longitudinal phase-space



q Microbunching instability in LINACs
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@ Gain mechanism:

density modulation — energy mod. e density mod.

linac

@ Main ingredients:

bunch comp.

LSC (Longitudinal Space Charge) & CSR (Coherent Synchrotron Radiation)
[Saldin et al., NIMA 490, 1 — 8 (2002)], [Saldin et al., NIMA 528, 355 — 350 (2004)]
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[Z. Huang et al., SLAC-PUB-11597 (2005)]



&) High-quality e-beam for high-gain FELs ?
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LH OFF

W“l !/'

@ Broadband pBIl with maximum gain
around few pm.

o Longitudinal phase-space modulated in
energy and/or density through uBI.

@ Increase of (energy spread) comparable
to the FEL parameter
— suppression of SASE gain.

@ One of the methods to control and
suppress the uBl: the laser heater (LH)
— induces a controllable increase of the
(energy spread) to damp the uBI.

[Saldin et al., NIMA 528, 355 — 359 (2004)] position

[Ratner et al., PRSTAB 18, 030704 (2015)]



q Microbunching and seeded FELs
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@ A seeded FEL is more sensitive to e-beam
phase-space properties.

@ Small imperfections on the phase-space
have strong impact on FEL spectrum.

1

@ seed laser modulation (ks) superposed to
Bl modulation (k,g)

@ generation of FEL pulses via frequency
mixing process:
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Spectrum intensity (a.u.)

@ stochastic effect on the FEL spectrum ‘
[Z. Zhang et al., PRAB 19, 050701 (2016)] _ o
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© Multicolor FEL driven by seeded microbunching instability



q "Seeded Linac”
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@ Principle

Take advantage of the microbunching instability gain occurring in the linear
accelerator to imprint a coherent modulation onto the electron beam,
using a dedicated laser heater pulse shaping [E. Roussel et al., PRL 115, 214801 (2015)]

— seeded microbunching instability !

Modulator

Radiators

Linac 1 Linac 2, 3 Linac 4



&) \What's the laser heater (LH)?
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The LH induces a homogenous increase of the uncorrelated energy spread to
damp the uBIl. Optical wavelength washed out at the exit of the chicane.

Ti:Sa laser
800 nm

A

AHE

Before the chicane In the chicane After the chicane

30 20 -10 0 10 20 30 30 20 -10 0 10 20 30
z[um] z[pm]




q LH pulse shaping
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@ Generation of a modulated laser pulse using chirped pulse beating

technique
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[Weling and Auston, JOSA B 13, 2783 (1996)]

o LH intensity profile with beating frequency inside the gain curve of uBl
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&) Modulation of the electron beam (1)
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@ Can we really modulate the ebeam using LH beating ?
Smearing condition of the LH chicane: A\ < 27|R520,/| =4 pm.
Here, optical wavelength = 780 nm and beating wavelength = 32.6 um.

Beli:ore the chicane In the chicane ; After the chicane




&) Modulation of the electron beam (2)
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SPBC1

Modulator FEL
Seed —__ 3

Radiators

Gun Linac 1 Linac 2, 3,4

@ Exp. observation of energy distribution (in SPBC1)

nominal LH
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&) Modulation of the electron beam (2)
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SPBC1

Modulator FEL
Seed —__ N

Radiators

Gun Linac 1 Linac 2, 3,4

@ Exp. observation of energy distribution (in SPBC1)
LH beating

AT

HL”““-“*

—>ii«0.18 MeV

272 274 276 278
Energy (MeV)

Linear energy chirp (spectro-temporal mapping) — 0.18 MeV = 32.4 um



&)Y Microbunching amplification
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q Microbunched electron beam in the undulators
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Modulator FEL
SPBC1 ! =L

Gun Linac 1 Linac 2, 3,4

@ Transport of the microbunched ebeam in the undulator chain
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Observation of strong coherent transition radiation (COTR) in the IR
domain at the exit of the undulators in case of microbunched ebeam.



&) Impact on FEL emission

FERMI is a seeded FEL based on high-gain harmonic generation (HGHG).
kreL = hks
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&) Impact on FEL emission
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FERMI is a seeded FEL based on high-gain harmonic generation (HGHG).
kFEL = hks + kaB

9ks+Cks 9ks 9ks-Ckg

LH beating
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Observation of sidebands coming from a frequency mixing between the seed
wavelength and the beating wavelength (scaled by the compression factor C).



&) Tunability of FEL spectrum
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Tuning of the sideband position by acting:

@ on the compression factor C or on the beating wavelength kp.
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q FEL sideband selection

Elettra Sincrotrone Trieste

FEL gain

Wavelength (nm)

3.34 3.345 3.35 3.355 3.36 3.365
Undulator parameter K

Selection and FEL amplification of one sideband by tuning the radiator
resonance condition.



&)Y FEL in the "dark” part of the seed laser
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o FEL-1 range for the "nominal” FERMI seed laser operation (230 — 260 nm)

FEL1 available wavelength range

20 50 60 70 100
FEL wavelength (nm)

@ Increased tunability via LH beating-induced sidebands
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© Towards tunable narrowband THz emission



q Towards tunable narrowband THz emission
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SPBC1 Modulator FEL

Seed ~

LH BC1
N Radiators

> Al MBD  THz

radiation

Gun Linac 1 Linac 2, 3,4

@ TeraFERMI: parasitic THz beamline in the beam dump area.
Ultra-short, high-power THz pulses between 0.3 — 15 THz to pump on
electronic, vibrational and magnetic excitations.

[A. Perucchi et al., Rev. Sci. Instrum. 84, 022702 (2013)]

Wavelength range 1 mm - 20 um

THz pulse energy 50 pJ — few mJ
Operation conditions FEL-1/FEL-2
10/50 Hz

Courtesy of A. Perucchi



q LH pulse shaping
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Strategy: modulate the electron beam in the sub-THz/THz range and take
advantage of the bunch compression to reach the THz/tens of THz range.

o First application in storage rings (UVSOR, Japan): [C. Evain et al.,, Phys. Rev. ST
Accel. Beams 13, 090703 (2010)]

o Calculation for LINAC: [z. Zhang et al., Phys. Rev. Accel. Beams 20, 050701 (2017)]
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1 THz = 300 um — no uBI gain in these wavelengths ..
but no need because strong modulations are available at the LH !



&)Y Simulation of ebeam dynamics
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Laser Heater nd
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Comp. factor Cy~4.1 Cy~1.8

Rsg1 = —42 mm  Rseo = —20 mm

Simulation with ELEGANT. Initial condition: A = 200um, AE = 50 keV.
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&) Experimental THz-modulated ebeam
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SPBC1 Modulator

Seed

Radiators

MBD THz
radiation

Linac 1 Linac 2, 3,4

DBD

@ Observation of a modulated beam in the tens of THz range at the end of
the linac starting from an initial modulation in LH around 2 THz.
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q Tunable THz modulation
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&) Optimization of modulation amplitude
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Optimization of the rotation of the structures by controlling the initial
modulation amplitude at the LH or by acting on the dispersion strength.



&) Optimization of modulation amplitude (bis)
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@ Conclusion



q Conclusion
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@ LH pulse shaping: an alternative method to probe and investigate the
microbunching instability.

o LH: a powerful tool to control the FEL spectro-temporal properties.

o Generation of tunable, incommensurate, multicolor FEL pulses.
[E. Roussel et al., PRL 115, 214801 (2015)]

o Non-gaussian ebeam heating for higher harmonic frequency conversion
[E. Ferrari et al., PRL 112, 114802 (2014)]

o LH pulse shaping for FEL pulse duration control.
[V. Grattoni, IPAC17, WEPAB034]

@ Towards the generation of intense tunable narrowband THz radiation.

@ And what about SASE FELs... ?
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