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Abstract
In this work we investigate the standard error of the

spin precession frequency estimate in an experiment for the

search for the electric dipole moment (EDM) of the deuteron

using the polarimeter. The basic principle of polarimetry is

the scattering of a polarized beam on a carbon target. Since

the number of particles in one fill is limited, we must max-

imize the utility of the beam. This raises the question of

sampling efficiency, as the signal, being an oscillating func-

tion, varies in informational content. To address it, we define

a numerical measurement model, and compare two sampling

strategies (uniform and frequency-modulated) in terms of

beam-use efficiency. The upshot is the formulation of the

conditions necessary for the effective use of the modulated

sampling strategy, and the evaluation of its advantage over

the uniform strategy. The simulation results are also used to

compare two competing analytical models for the standard

error of the frequency estimate.

DETECTOR COUNTING RATE MODEL
We assume the following model for the detector counting

rate:

N(t) = N0(t) ·
(
1 + P · e−

t/τd · sin(ω · t + φ)
)
, (1)

where τd is the decoherence lifetime, and N0(t) is the count-
ing rate from the unpolarized cross-section.

Since the beam current can be expressed as a function of

time as

I(t) ≡ Nb(t)ν = I0 · eλb t,

λb = −τ−1b the beam lifetime, the expected number of par-

ticles scattered in the direction of the detector during mea-

surement time Δtc is

N0(t) = p ·
∫ +Δtc/2

−Δtc/2
I(t + τ)dτ

= p · νN
b
0

λb
eλb t ·

(
eλb

Δtc/2 − e−λb
Δtc/2

)
≈ p · νNb

0 eλb t︸��������︷︷��������︸
rate r(t)

·Δtc, (2)

where p is the probability of “useful” scattering.
The actual number of detected particles will be distributed

as a Poisson distribution

PN0(t)(Ñ0) =
(r(t)Δtc)Ñ0

Ñ0!
· e−r(t)Δtc ,
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hence σ2
Ñ0
(t) = N0(t).

We are interested in the expectation value N0(t) =
E
[
Ñ0(t)

]
, and its variance σN0 (t). Those are estimated as

summary statistics:

〈Ñ0(t)〉Δtε =
1

nc/ε

nc/ε∑
i=1

Ñ0(ti), nc/ε = Δtε/Δtc,

and

σÑ0(t) |Δtε =
1

nc/ε

nc/ε∑
i=1

(
Ñ0(ti) − 〈Ñ0(ti)〉Δtε

)2
.

(Δtε is the event measurement time, Δtc is the polarimetry
measurement time.) Being a sum of random variables, N0(t)
is normally distributed.

The standard error of the mean then is

σN0 (t) = σÑ0 (t)/
√

nc/ε =

√
N0(t)

Δtc
Δtε

≈
√

p · νNb
0

Δtε
· Δtc · exp

(
λb
2
· t
)
.

Relative error grows:

σN0 (t)
N0(t)

≈ A√
Δtε

· exp
(
−λb
2

t
)
, A =

1√
p · νNb

0

. (3)

FIGURE OF MERIT
A measure of the beam’s polarization is the relative asym-

metry of detector counting rates: [2, p. 17]

A = N( π
2
) − N(− π

2
)

N( π
2
) + N(− π

2
) . (4)

In the simulation to follow, the function fitted to the asym-

metry data is:

A(t) = A(0) · eλd ·t · sin (ω · t + φ) , (5)

with three nuisance parameters A(0), λd , and φ.
Due to the decreasing beam size, the measurement of

the figure of merit is heteroscedastic. From [2, p. 18], the

heteroscedasticity model assumed is

σ2A(t) ≈
1

2N0(t)
. (6)
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CONDITIONS FOR MAXIMUM
PRECISION

Assuming a Gaussian error distribution with mean zero

and variance σ2ε , the maximum likelihood estimator for the
variance of the frequency estimate of the cross-section asym-

metry A can be expressed as

var [ω̂] = σ2ε
Xtot · varw [t]

,

with

Xtot =

nε∑
j=1

xj =
nzc∑
s=1

nε/zc∑
j=1

xjs,

varw [t] =
∑
i

wi (ti − 〈t〉w)2 , 〈t〉w =
∑
i

witi,

wi =
xi∑
j xj
, xi = (A(0) exp(λdti))2 cos2(ωti + φ).

In the expression above, Xtot is the total Fisher informa-

tion of the sample, and varw [t] is a measure of its time-
spread. It can be observed that by picking appropriate sam-

pling times, one can raise the Xtot term, since it is propor-

tional to a sum of the signal’s time derivatives. If the oscilla-

tion frequency and phase are already known to a reasonable

precision, further improvement can be achieved by the ap-

plication of a sampling scheme in which measurements are

taken only during rapid change in the signal (sampling mod-

ulation). Improvement here is limited by the polarimetry

sampling rate.

Both the varw [t] and Xtot terms are bounded as a result of

spin tune decoherence. We can express
∑nε/zc

j=1
xjs = nε/zc ·x0s ,

for somemean value x0s at a given node s. nε/zc is the number
of asymmetry measurements per node. The period of time

during which measuring takes place, Δtzc , is termed com-
paction time. The value of the sum

∑nε/zc
j=1

xjs falls exponen-

tially due to decoherence, hence x0s = x01 exp (λd · (s−1)·πω ).
Therefore,

Xtot = nε/zc · x01 ·
exp

(
λdπ
ω nzc

)
− 1

exp
(
λdπ
ω

)
− 1

≡ nε/zc · x01 · g(nzc);

(7)

x01 =
1

Δtzc

∫ +Δtzc/2

−Δtzc/2
cos2(ω · t)dt = 1

2
·
(
1 +

sinωΔtzc
ωΔtzc

)
,

(8)

nε/zc =
Δtzc
Δtε
. (9)

Eq. (7) provides us with a means to estimating the limits

on the duration of the experiment. In Table 1, the percentage

of the total Fisher information limit, the time in decoherence

lifetimes by which it is reached, and the signal-to-noise ratio

by that time, are summarized. The signal-to-noise ratios are

computed according to:

SNR
�
=
A(0) · e−t/τd

σA(t)

≈
√
2 · p · νNb

0
· Δtc · A(0) · exp

[
− t
τd

·
(
1 +

1

2

τd
τb

)]
,

(10)

in which, from σA(0)/A(0) ≈ 3%, the factor before the
exponent is 33.

Table 1: Amount of Fisher information (in percents of the

available limit) contained in a sample collected for the dura-

tion specified in decoherence lifetimes, and the correspond-

ing signal-to-noise ratio.

FI limit (%) Duration (×τd) SNR

95 3.0 0.4

90 2.3 1.1

70 1.2 5.5

50 0.7 11.7

SIMULATION
We simulated data from two detectors with parameters

gathered in Table 2 for Ttot = 1000 seconds, sampled uni-
formly at the rate fs = 375Hz. These figures are chosen for
the following reason: the beam size in a fill is on the order of

1011 particles; if we want to keep the beam lifetime equal to

the decoherence lifetime, we cannot exhaust more than 75%

of it; only 1% of all scatterings are of the sort we need for

polarimetry, so we’re left with 7.5 · 108 useful scatterings. A
measurement of the counting rate N0(t) with a precision of
approximately 3% requires somewhere in the neighborhood

of 2000 detector counts, which further reduces the number

of events to 3.75 · 105 = fs · Ttot . One thousand seconds is
the expected duration of a fill, hence fs = 375Hz.
Relative measurement error for the detector counting rates

is depicted in Fig. 1; the cross-section asymmetry, computed

according to Eq. (4), is shown in Fig. 2. To these data we

fit via Maximum Likelihood a non-linear heteroscedastic

model given by Eq. (5), with the variance function for the

weights given by Eq. (6). The fit results are summarized in

Table 3.

Table 2: Detector Counting Rates’ Model Parameters

Left Right

φ −π/2 +π/2 rad

ω 3 rad/sec

P 0.4

τd 721 sec

τb 721 sec

N0(0) 6730

Modulation Gains
If the initial frequency estimate obtained from a time-

uniform sample has a standard error on the order of
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Figure 1: Simulated Relative Counting Rate Measure-

ment Error for the Left and Right Detectors as a Function

of Time

Figure 2: Expectation value (gray line) and sample mea-

surements (red dots) of the cross-section asymmetry in

a simulation.

Table 3: Asymmetry Fit Results

Parameter Estimate SE Unit

A(0) 0.400 9.03 · 10−5
λd 0.001 7.86 · 10−7 1/sec

ω 3.000 7.55 · 10−7 rad/sec

φ 1.571 2.25 · 10−2 rad

10−6 rad/sec, simulation shows the standard error of the esti-
mate can be improved to ≈ 5.8 · 10−7 rad/sec.

CONCLUSION
Because in the proposed experiment the deuteron EDM

is probed by measuring an oscillating function, a suggestion

was made that the experimental precision could be improved

by the application of a frequency-modulated sampling strat-

egy. In developing the statistical model, the concept of Fisher

information was directly employed, which was instrumental

in quantifying the gains in precision from both the increase in

the duration of an experiment run, and sampling modulation.

The model predicts that ultimately, the standard error of the

frequency estimate can be improved by at the most a factor

of
√
2, i.e. by 29%; however, due to imprecision in the pre-

requisite frequency estimate, this improvement is inevitably

weakened, down to 23% in the present simulation. The best

achieved precision in the simulation is 5.8 · 10−7 rad/sec,
which in a year of 1000-second long measurements should

produce an average value with the standard error of approxi-

mately 4.0 · 10−9 rad/sec, sufficient for the detection of an
EDM on the order of 10−29 e·cm.
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