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Abstract

In transverse feedback systems a phase adjustment is gen-

erally required to convert a beam position signal from a

pick-up into a momentum correction signal used by a trans-

verse kicker. In this paper we outline several possibilities for

phase adjustments using only single pick-ups or the vector

combination of two pick-ups. Analytical expressions are

given as a function of the fractional tune and the betatron

phase advance between the pick-up location and the kicker.

The shortest possible digital filter is formulated, including

a notch for closed orbit suppression and a free parameter

to adjust for betatron phase. We introduce a novel, fully

parametrized digital filter with the feature to be insensitive

to variations in fractional tune. Examples are given for the

SPS transverse feedback system and compared with mea-

surements.

INTRODUCTION

In larger synchrotrons pick-ups and kickers can be gener-

ally placed at locations such that the betatron phase advance

between them allows for the signal to be directly applied for

feedback without further phase adjustments. These locations

are however not always available for installing a dedicated

monitor, or the required phase advance might change in

machines with cycle-dependent optics.

The transverse feedback system (TFB) of CERN’s Super

Proton Synchrotron (SPS) has its pick-ups installed in close

proximity to the kickers. The following analysis therefore

aims on identifying potential solutions for transverse feed-

back phase adjustments using short finite impulse response

(FIR) digital filters and one or more pick-ups.

SIMPLE BEAM MODEL IN z-DOMAIN

A first-order difference equation for the complex-valued

sequence x[n], which describes the linear portion1 of the

particle motion through the magnetic guidance field, is given

by a recurrence formula,

x[n + 1] = αx[n], n ≥ 0; α = re jω0 . (1)

Introducing the z-Transform, defined by theZ{·}-operator

(bilateral transform) [2],

Z{x[n]} =
∞
∑

n=−∞
x[n]z−n = X (z) , (2)

and applying it to the recurrence formula yields after some

reformulation

X (z) =
1

1 − αz−1
. (3)

∗ gerd.kotzian@cern.ch
1 We shall consider the case where the amplitude decay is dominated by

active damping only, see also Ref. [1].

The rational function X (z) has a single complex-valued

pole at z = α, which corresponds to the fact that the se-

quence x[n] is complex-valued. Thereby, the convention

used for Eq. (1) attributes the real part of x[n] as transverse

displacement, y = ℜ{x}, and the imaginary part as the

trajectory’s slope, y′ = ℑ{x}.

Figure 1: Simple beam model in z-domain.

The action of a kicker only changes a particle’s slope.

Consequently, in Fig. 1 the real-valued input sequence u[n]

is first multiplied by the imaginary unit j =
√
−1 and subse-

quently added to the complex-valued sequence x[n]. Beam

position monitors detect only transverse displacement, hence

y[n] = ℜ{x[n]}, as outlined in Figure 1.

The overall beam transfer function G(z) can therefore be

expressed as

G(z) =
Y (z)

U (z)
= j

1

2

(

1

1 − αz−1
− 1

1 − α∗z−1

)

. (4)

Here, α and α∗ are the two conjugate complex poles of

G(z). It is worth noting that the second pole seen at the

output, Y (z) = G(z)X (z), is the result of the pick-up and its

ability to only detect transverse position.

Equation (4) can be expanded and rewritten as

G(z) =
r sinω0 z−1

1 − 2r cosω0 z−1
+ r2 z−2

, (5)

which makes it evident that due to the term z−1 in the numer-

ator the output sequence is readily delayed by one sample,

corresponding to the fact that a response to a transverse de-

flection at a particular longitudinal position is visible only

after one turn.

In Eq. (5) the parameter r determines whether the oscilla-

tion at frequency ω0 is stable (|r | < 1), steady (|r | = 1), or

unstable (|r | > 1).

Taking into account an arbitrary phase shift φPU between

kicker and pick-up, i.e. by extending the pick-up output such

that y[n] = ℜ{x[n] · e jφPU } one obtains more generally as

beam transfer function

G(z, φPU ) =
r sin(ω0 + φPU ) z−1 − r2 sin φPU z−2

1 − 2r cosω0 z−1
+ r2 z−2

. (6)
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As can be seen from Eq. (6) the introduction of a betatron

phase advance between pick-up and kicker has no impact

on the position of the poles (the denominator is unaltered).

In fact the required phase shift is established solely by an

additional zero in the numerator, moving on the real axis of

the z-plane as the phase angle changes.

PICK-UP PLACEMENT

The ultimate goal could be stated as follows: determine

the slope of a particle’s trajectory at the position of the kicker,

to be able to counteract oscillations by correcting its trajec-

tory (i.e. the transverse momentum py) on a turn-by-turn

basis.

Given that — at the time of writing — there is no tech-

nique known which allows to directly measure transverse

momentum, it requires an indirect method to obtain the slope

via position measurements.

By recalling that a pick-up measures the real part it be-

comes obvious that if the sequence is phase rotated, by −90◦

or − j, then the corresponding slope is returned as position,

yp , seen by the pick-up:

yp = ℜ{− j x} = ℜ{− jy + y
′} = y

′ . (7)

This procedure allows for two possible interpretations to

realize the phase rotation: (a) Spatial phase shift, and (b)

Temporal phase shift.

Spatial Phase Shift

Technically speaking, Eq. (7) means nothing else than to

physically place a pick-up at betatron phase advance −90◦

with respect to the kicker.

However, if the installation of a pick-up at this phase

advance is not realizable, then a phase rotation ϕ can be

obtained by combining (mixing) the signals of two pick-ups

accordingly, that is,

yk = p1 · cos ϕ + p2 · sin ϕ . (8)

Here, p1 = ℜ{x · e jψ } and p2 = ℜ{x · e j (ψ+π/2) } are two

pick-ups at an arbitrary longitudinal position, ψ, but with 90◦

phase advance between them. The outputs are then mixed

together to obtain the sequence yk for the kicker action.

For the combination of two pick-up signals that have a

phase advance different than 90◦ a more general solution

has been already formulated in Ref. [3], as Pick-up Vector

Sum. As detailed therein, the two pick-up mixing coefficients

follow from

b1,2 = −
1

2

(

cos(∆φQkm)

cos(∆φ/2)
∓ sin(∆φQkm)

sin(∆φ/2)

)

, (9)

where ∆φ = φ2 − φ1 describes the phase advance between

the two pick-ups, and with

∆φQkm = −3πQ f + φk −
φ2 + φ1

2
. (10)

The fractional tune is denoted as Q f , and φ1, φ2, and

φk are the betatron phase advances at pick-up and kicker

locations with respect to some fixed reference. Equation (10)

is readily taking into account a one-turn delay and the phase

shift of the notch filter.

Temporal Phase Shift

During one complete revolution a particle exhibits a pre-

cise number of oscillations, thus if the fractional tune Q f is

0.25 then a phase rotation of 90◦ is achieved between con-

secutive turns. By reconsidering Eq. (7) we can exploit this

as

yp[n] = ℜ{ j x[n − 1]} = −y′[n − 1] , (11)

which states that the position yp at turn n represents the

negative slope, −y′, of the previous turn, n − 1.

In reality a fractional tune close to the quarter integer

resonance is usually not very practical. Therefore the same

Pick-up Vector Sum algorithm as for the two pick-up case

can be applied for a single pick-up at subsequent turns, as

outlined in Fig. 2. In this case we define φ1 = 0 and φ2 =

2πQ f , to be used with Eq. (9) respectively Eq. (10).

Figure 2: Block diagram of temporal phase shift.

Figure 2 suggests that by considering a notch filter using

h[n] = [1,−1] the phase shift between yk[n] and p[n] can

be carried out by a short FIR, with the filter coefficients

resulting from

yk[n] = b1p[n] + (b2 − b1)p[n − 1] − b2p[n − 2] . (12)

With only three taps and including a notch for DC-orbit

suppression Eq. (12) describes the shortest possible digital

filter. The design has two parameters, the fractional tune

Q f and a free parameter φk which allows for direct phase

adjustment.

Optionally, improved noise suppression can be achieved

with zeros added at z = ±1, which can be absorbed into

the notch filter, h[n], including an extra phase term, ∆ϑ =

−πQ f into Eq. (10) for every additional tap the notch filter

is extended.

By anticipating that the group delay — a measure for lin-

earity of the phase — introduced by a filter lowers the stable

phase margin of a closed loop system we made an attempt to

compensate this effect by introducing an additional pair of

conjugate complex zeros, c1,2 = ζe±jωd , at the desired tune

frequency, ωd = 2πQ f , which adds negative group delay as

a function of the magnitude, ζ . The group delay as specified

in Ref. [2] follows for a direct-form FIR transfer function as

τ(ω) = −
M
∑

k=1

|ck |2 −ℜ{cke−jω }
1 + |ck |2 − 2ℜ{cke−jω } . (13)
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(a) Standard Hilbert phase shifter.
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(b) Short 3-tap FIR filter.
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(c) Group delay compensated.

Figure 3: Root locus plots, fractional tune Q f = 0.18 ± 0.04.

By taking into account the secondary phase term resulting

from these zeros the overall group delay was compensated

to τ(ω) = 0 at the design tune, ω = ωd. Note that a sys-

tem having zero group delay is able to transmit the signal’s

envelop without delay.

RESULTS

The introduced beam model of transverse oscillations

(Eq. (6)) allows numerical evaluation of the analytic expres-

sions for the described phase adjustment possibilities. We

use root locus plots to study the evolution of the beam’s

closed-loop poles at selected frequencies, ω0 = 2πQ f , and

as a function of the feedback gain.

The three plots in Fig. 3 detail a portion of the upper

right quarter of the complexz-plane. As an example closed-

loop pole trajectories for the SPS vertical plane are shown,

assuming a fractional tune of Q f = 0.18 and variations of

up to ±0.04 (blue,solid). Their origin is at the unit circle

(black, bold solid) for zero loop gain (corresponding to the

undamped open loop response). By increasing the feedback

gain the damping time reduces gradually until the trajectories

cross the circle at |z | = 0.95 (red, dashed) which is the

design value of the SPS TFB corresponding to 20 turns.

For as long as a trajectory points towards the origin of the

z-plane (black, dash-dotted lines) it will follow the desired

closed loop negative feedback of −180◦.
Figure 3(a) shows the beam response for a standard FIR

Hilbert phase filter, using seven taps for the case of the SPS

TFB. As can be seen this filter is working perfectly fine at

the target tune of 0.18, however, the feedback phase appears

to be sensitive to tune variations, with the active feedback

adversely pushing the tune further away the more its value

deviates from the desired value. This effect is attributed

to the constant group delay of the FIR filter causing the

feedback phase to be optimum only for a single frequency

and to roll off quickly for long filters.

As already anticipated, shortening the FIR filter length

to only 3 taps, as provided by Eq. (12), has a positive effect

on tune variations, as can be seen by inspecting Fig. 3(b),

with the closed loop response remaining stable over a larger

range of tune values.

Figure 3(c) shows that the loop stability is ultimately im-

proved by carefully compensating the group delay of the

digital filter. With its flat phase response around the design

tune this filter is robust against changes of the fractional tune

in the order of ±22%. This filter was tested in the SPS TFB

by changing the machine’s fractional tune and performing

beam transfer function measurements. The results listed in

Table 1 confirm the theory of negative feedback over the

same range of fractional tunes.

Table 1: Measured Loop Response vs. Tune

Tune 0.14 0.16 0.18 0.20 0.22

Phase −167◦ −179◦ −182◦ −182◦ −187◦

SUMMARY AND CONCLUSION

New FIR phase shift filters have been designed and anal-

ysed for the SPS TFB based on a simple beam model in z-

domain and with root locus plots, to assess their closed loop

performance with beam and in presence of active feedback.

The obtained results were found to be in good agreement with

measurements carried out in the SPS. Limitations on system

gain [4], the performance in the presence of noise [5, 6],

and the ability to reject disturbances are subject of further

studies.

The shortest digital filter described has only 3-taps, includ-

ing DC suppression by a notch filter (for other realisations of

short phase shift filters see for example [7–12]). Moreover,

the tune sensitivity was further compensated with an addi-

tional pair of conjugate complex zeros, effectively lowering

the filter’s group delay to zero at the fractional tune. Com-

pensation of tune-dependent phase variations were reported

also in Ref. [13].

The described digital filters are reasonable candidates for

replacing the Hilbert phase shifter currently in use in the

transverse feedback system of the SPS, mostly due to their

favourable response over a larger range of tune values.
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