
NEW APPROACH IN DEVELOPING OPEN XAL APPLICATIONS
C. Rosati∗ and E. Laface, European Spallation Source ERIC, Lund, Sweden

Abstract
Open XAL project is a pure-Java open source develop-

ment environment used for creating accelerator physics ap-
plications, scripts and services.
Working with Open XAL requires developing a Java ap-

plication with a prominent graphical user interface, allowing
the final user to interact with the accelerator model, and
to graphically view the results such interaction produced.
Nevertheless the Open XAL support for specialized compo-
nents1 and for a document-view application framework2, a
lot of boilerplate code has still to be created, making the de-
veloper spending more time in UI than in accelerator physics
code.
In this paper a new approach in developing Open XAL

applications is explained. Here the developer is relieved
of the UI-related common code by using software tools, al-
lowing him to visually design the flow of data and events
between the various elements of the applications (widgets
and models), and automatically generate the application
code, where code generation can be customized to use one
of the available plugged languages (Java, Python, JS, . . . ).

INTRODUCTION
Open XAL [1, 2], is an open source accelerator physics

software platform written in Java and used for creating ac-
celerator physics applications, scripts and services. The
Open XAL project began in mid 2010 as a response to re-
quests from the international accelerator physics community
to adopt an open source accelerator physics platform based
on XAL [3] from the Spallation Neutron Source (SNS) at
Oak Ridge National Lab (ORNL) and establish a standard
platform for accelerator physics software.
Writing a modern client application with a prominent

graphical user interface (GUI, see for example Figure 1)
requires writing a lot of code to exclusively handle the user
interface. For example, the Open XAL Model Browser ap-
plication is made of 950 lines of Java/JavaFX code (not
counting blank and comment lines [4]). Of these, only 11
(1% of the total code) are “pure” Open XAL lines of code,
used to run the ESS Linac Simulator (ELS) model [5].
It is our belief that a new tool for building Open XAL

graphical client applications can be created, to automate
the production of UI-related common code and to clearly
define the boundaries between the GUI and the Open XAL
development. Moreover, although this article makes specific
reference to Java and JavaFX, we also believe possible to ex-
tend what herein described to other programming languages,
e.g. Jython/Python, JS, C/C++, . . .
∗ Claudio.Rosati@esss.se
1 Handling plotting, EPICS connection, etc.
2 Relieving the developer of the burden related with this programming
aspects.

Figure 1: Open XAL Model Browser displaying an ELS
simulation.

OPEN XAL MODEL BROWSER
To prove our new approach we decided to develop a new

client application (see Figure 1) using the traditional work-
flow, the Java programming language [6, 7], and the JavaFX
GUI framework [7–10]. The application allows the user
to browse the accelerator model, look at the selected node
attributes, real-time EPICS values, and introspected prop-

Figure 2: Top panels.

Proceedings of IPAC2017, Copenhagen, Denmark THPAB137

06 Beam Instrumentation, Controls, Feedback and Operational Aspects
T33 Online Modelling and Software Tools

ISBN 978-3-95450-182-3
4043 Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs



Figure 3: Scene Builder used to edit Open XAL Model Browser GUI.

erties. Moreover, if a top-level node is selected, the node
probe can also be inspected and a simulation run (see Figure
2).
The model tree can be configured to show only certain

nodes and/or nodes whose identifier matches a given search
string. The inspector content can also be filtered in real-time,
and table headings can be made visible to alter the columns
size. As soon as the simulation run has completed, its results
are displayed into the X-Y chart at the bottom.
The application GUI was built using Scene Builder [11]

(see Figure 3), the standard open-source application provided
by the JavaFX team3. The program code (10 classes, 950
lines of code, 258 lines of comments, 373 blank lines, [4])
was written in the Java programming language [6] using the
NetBeans Integrated Development Environment (IDE, [14]).

THE NEW APPROACH
The new approach reckon on a graphical tool, Open XAL

Modeller, that will relieve the Open XAL programmer from
writing most (if not all) the UI code of a client application.

Designing the User Interface
The JavaFX team created a tool to facilitate building user

interfaces based on the new Java UI Toolkit technology:
Scene Builder [11]. In its “Getting Started” document [15]
the following is written:

JavaFX Scene Builder provides a visual layout en-
vironment that lets you quickly design user inter-
faces (UI) for JavaFX applications without need-

3 Now hosted by Gluon [12, 13].

ing to write any code. [. . . ] JavaFX Scene Builder
provides a simple yet intuitive interface that can
help even non-programmers to quickly prototype
interactive applications that connect GUI compo-
nents to the application logic.

The approach followed by the JavaFX team defines clear
boundaries between whom designs the user interface and
who will code the application logic behind that UI, the latter
being, in our vision, the Open XAL Modeller tool.
The Scene Builder application demonstrated to be very

well made and easy to use. Moreover, the possibility of
integrate it into a wider application [16]makes Scene Builder
the perfect choice as the framework for building the graphical
user interface of an Open XAL client applications.
Thanks to the Scene Builder kit Application Program-

ming Interface (API, [16]) every parts of the Scene Builder
application (see Figure 3) can be embedded into another
application (the Open XALModeller tool, in our case), mak-
ing possible to edit the user interface and contemporarily
accessing its components structure and properties: a perfect
integration.

Designing the Application Logic
To connect the graphical user interface with the applica-

tion logic, a visual programming tool will allow to define
the bindings between JavaFX properties [17, 18], and to use
events [19] to trigger execution of code (see Figure 4).

Inside this editor the Open XAL programmer will be able
to:

• graphically bind JavaFX properties, dragging an item
from the sourceProperties table into another item of the

THPAB137 Proceedings of IPAC2017, Copenhagen, Denmark

ISBN 978-3-95450-182-3
4044Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

06 Beam Instrumentation, Controls, Feedback and Operational Aspects
T33 Online Modelling and Software Tools



Figure 4: Flow editor used to design the application logic.

destination one. The tool will automatically create the
code necessary to convert data into a different data type
if necessary (see Selected Item connection in Figure
4), or insert a code node where to manually implement
the type mapping using the preferred programming
language (Java, C/C++, Jython, Python, . . . ). Filter
code nodes can also be added on request to narrow the
bound data (see initialise node in Figure 4);

• add code nodes bound to JavaFX properties and events,
exporting new properties whose values are computed
when input data change and/or events are triggered.

Once the execution flow is designed, the tool will be able
to create the full set of project files4(Java, Python, C/C++
classes, fxml and other resource files).
Classes will be generated in pair: a read-only abstract

superclass containing all of the boilerplate code and the ab-
stract definition of methods corresponding to code nodes,
and a subclass to be filled by the Open XAL programmer,
containing the implementation of the abstract methods. Sub-
classes are automatically updated only to add new methods
corresponding to new code nodes. Superclasses are, instead,
automatically updated when the user interface or the execu-
tion flow changes.

When non-Java code nodes are used, the Java superclass
will be created with a concrete definition of the method corre-
sponding to the code node, where the statements to properly
call the foreign language counterpart will be included.
A specific NetBeans IDE plugin [14, 23, 24] could be

developed to facilitate jumping back and forward between
4 The project itself being created through a specific Maven archetype [20],
or a custom built ant task [21, 22].

the IDE5and Open XAL Modeller, improving even further
the development experience.

CONCLUSIONS
Developing Open XAL client graphical applications re-

quires coding the graphical user interface and the interaction
with the application logic, resulting in a program where
coding is mostly focused on the UI and the relative com-
mon programming statements, rather than on the accelerator
physics application logic itself. For example, the size of the
application logic of the program used as a reference for this
paper is only the 1% of the total code lines.

We at the European Spallation Source believe it possible
to develop a tool capable to automatically create most of the
user interface boilerplate code from

• the fxml file(s) describing the graphical user inter-
face(s) created through the JavaFX Scene Builder ap-
plication [11–13,15],

• the execution flow graph (see Figure 4) depicting the
binding relationships between the application compo-
nents.

The Open XAL Modeller tool we intend to build will be
a module of a larger pure Java/JavaFX application based
on Drombler FX [25], an open source modular application
framework for JavaFX, and will be the first of a series of new
tools [26] aimed to modernize and improve the stand-alone
control system software used at European Spallation Source
by the Integrated Control System group.
5 Used to compile, debug, test and deploy the client application.

Proceedings of IPAC2017, Copenhagen, Denmark THPAB137

06 Beam Instrumentation, Controls, Feedback and Operational Aspects
T33 Online Modelling and Software Tools

ISBN 978-3-95450-182-3
4045 Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs



REFERENCES
[1] OpenXAL Website. [Online]. Available: https://github.com/

openxal/openxal
[2] A. Zhukov and C. K. Allen, “Open XAL Status Report 2017,”

in This Conference, no. THPVA093, 2017.
[3] J. Galambos et al., “XAL application programming struc-

ture,” in Particle Accelerator Conference, 2005. PAC 2005.
Proceedings of the. IEEE, 2005, pp. 79–83.

[4] CLOC: Count Lines of Code Website. [Online]. Available:
https://github.com/AlDanial/cloc

[5] E. Laface et al., “The ESS Linac Simulator: a first
benchmark with TraceWin,” Proceedings of IPAC, 2013.
[Online]. Available: http://accelconf.web.cern.ch/accelconf/
ipac2013/papers/tupwo046.pdf

[6] J. Gosling et al. (2015, 2) The Java® Language Specification.
[Online]. Available: https://docs.oracle.com/javase/specs/jls/
se8/html/index.html

[7] Java Platform, Standard Edition (Java SE) 8, Client
Technologies Website. [Online]. Available: https://docs.
oracle.com/javase/8/javase-clienttechnologies.htm

[8] H. Schildt, Introducing JavaFXTM 8 Programming, 1st ed.
McGraw-Hill Education, 2015.

[9] J. Vos et al., Pro JavaFX 8: A Definitive Guide to Building
Desktop, Mobile, and Embedded Java Clients, 1st ed. Apress
Media, 2014.

[10] H. Ebbers,Mastering JavaFX® 8Controls, 1st ed. McGraw-
Hill Education, 2014.

[11] JavaFX Scene Builder: User Guide. [Online]. Avail-
able: http://docs.oracle.com/javase/8/scene-builder-2/
user-guide/index.html

[12] Scene Builder Website. [Online]. Available: http://gluonhq.
com/products/scene-builder/

[13] Scene Builder Documentation. [Online]. Available: http:
//docs.gluonhq.com/scenebuilder/

[14] NetBeans IDE Website. [Online]. Available: https://netbeans.
org

[15] JavaFX Scene Builder: Getting Started with JavaFX Scene
Builder. [Online]. Available: http://docs.oracle.com/javase/
8/scene-builder-2/get-started-tutorial/index.html

[16] Scene Builder Kit and 64-bit Scene Builder
Website. [Online]. Available: http://gluonhq.com/
scene-builder-kit-and-64-bit-scene-builder/

[17] JavaFX: Properties and Binding Tutorial. [On-
line]. Available: https://docs.oracle.com/javase/8/javafx/
properties-binding-tutorial/

[18] JavaFX Property Architecture. [Online]. Avail-
able: https://wiki.openjdk.java.net/display/OpenJFX/
JavaFX+Property+Architecture

[19] JavaFX: Handling Events. [Online]. Available: https://docs.
oracle.com/javase/8/javafx/events-tutorial/index.html

[20] Introduction to Archetypes. [Online]. Avail-
able: https://maven.apache.org/guides/introduction/
introduction-to-archetypes.html

[21] Developing with Apache Ant. [Online]. Available: https:
//ant.apache.org/manual/develop.html

[22] Tutorial: Writing Tasks. [Online]. Available: https:
//ant.apache.org/manual/tutorial-writing-tasks.html

[23] H. Böck, The Definitive Guide to NetBeansTM Platform 7,
1st ed. Apress Media, 2011.

[24] J. Wexbridge and W. Nyland, NetBeans Platform for Begin-
ners, 1st ed. Leanpub, 2014.

[25] Drombler FX Website. [Online]. Available: http://www.
drombler.org/drombler-fx/

[26] C. Rosati and K. Shroff, “JavaFX and CS-Studio: Benefits
and Disadvantages in Developing the Next Generation of Con-
trol System Software,” in 16th International Conference on
Accelerator and Large Experimental Physics Control Systems,
2017. ICALEPCS 2017. Proceedings of the, submitted.

THPAB137 Proceedings of IPAC2017, Copenhagen, Denmark

ISBN 978-3-95450-182-3
4046Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

06 Beam Instrumentation, Controls, Feedback and Operational Aspects
T33 Online Modelling and Software Tools


