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Abstract
Coherent synchrotron radiation (CSR) is an effect of self-

interaction of an electron bunch as it traverses a curved path.
It can cause a significant emittance degradation, as well as
fragmentation and microbunching. Numerical simulations
of the 2D/3D CSR effects have been extremely challenging
due to computational bottlenecks associated with calculat-
ing retarded potentials via integrating over the history of the
bunch. Our new high-performance 2D, particle-in-cell code
uses massively parallel multicore GPU/GPU platforms to
alleviate computational bottlenecks. The code formulates
the CSR problem from first principles by using the retarded
scalar and vector potentials to compute the self-interaction
fields. The speedup due to the parallel implementation on
GPU/CPU platforms exceeds three orders of magnitude,
thereby bringing a previously intractable problem within
reach. The accuracy of the code is verified against analytic
1D solutions (rigid bunch) and semi-analytic 2D solutions
for the chirped bunch. Here we use the new code in conjunc-
tion with a genetic algorithm and Bayesian optimization to
optimize the design of a fiducial chicane.

COHERENT SYNCHROTRON
RADIATION

Electromagnetic radiation is the result of the acceleration
of charged particles. When a large group of these charged
particles emit this radiation, the power emitted can be clas-
sified into two groups: coherent and incoherent [1]. The
coherent portion encompasses the lower frequency spec-
trum with little variation in wavelength and phase differ-
ence. The constructive interference that results exaggerates
the power allocated to the coherent portion. This coherent
portion is called Coherent Synchrotron Radiation (CSR).
CSR is proportional to the square of the number of charged
particles (N2) and inversely to the longitudinal size of the
beam (1/∆s). CSR is a mechanism whereby the beam self-
interacts. Namely, the radiation that the beam emitted at a
previous time can interact with the beam at a later time. This
simultaneous interaction between beam and radiation leads
non-linear, systemic effects that cannot be ignored. Among
these effects that are of interest to study are emittance degra-
dation and microbunching.

CODE
All classical electromagnetic effects are governed by

Maxwell’s equations and the Lorentz force equation, but
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analytical solutions to beam behavior consisting of many
thousands of charged particles are unfeasible without drastic
simplifying assumptions. Numerical solutions must be im-
plemented to quantify beam behavior. However a numerical
approach presents its own limitations: (i) the position and
strength of self-interacting radiation depends on the beam
at previous times. Therefore an algorithm attempting to
calculate self interaction needs to allocate the entire beam
history to memory (high memory usage); (ii) the Lorentz
force equation leads to the subtraction of very large numbers
by virtue of the electric and magnetic contributions to the
force (loss of significance); (iii) the large number of particles
involved result in an exponential rise in function evaluations,
especially for naive implementations (poor scaling). Our
innovative 2D particle tracking code has been implemented
to mitigate all of these issues [2]. The code assumes a pla-
nar beam and tracks the phase space distribution (position
and momenta of each particle). The self-interaction of the
beam is quantified in a time-dependent function called the
retarded potential. The simulation uses a particle-in-cell
(PiC) method.

A rough outline of the code is as follows [2]: (1) Sample
the initial distribution function; (2) Bin particles using a
deposition scheme; (3) Compute retarded potentials in the
grid frame using both the previous beam history and external
fields; (4) Compute spatial and temporal derivatives of the
potentials; (5) Compute the self-forces on each particle using
the derivative values; (6) Advance particles in time by a push
from calculated self-forces; (7) Loop back to Step 2 until the
end of the simulation is reached. The bulk of the execution
time is taken up by Step 3–computation of retarded poten-
tials by integrating over the history of the beam. The high
precision and speed of the new CSR code required a design
and implementation of a new adaptive multi-dimensional
quadratures on a hybrid GPU/CPU platform [3, 4].

ACCELERATOR DESIGN
Understanding how the geometry and setup of the ac-

celerator affect the beam a priori is of great interest. We
combine two optimization schemes–genetic algorithm (GA)
and Bayesian optimization–with our new CSR code in or-
der to compute geometries that produce an optimal beam
quality.
Here we demonstrate a proof of concept for this idea.

A GA and a Bayesian optimization were run to determine
which geometry of a simple three-bend bunch compressor
(Fig. 1) results in an optimal transverse emittance and longi-
tudinal spread (multi-objective problem). In transitioning
form single- to multi-objective problems, a notion of opti-
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mality changes from the single optimal solution (a minimum
or amaximum) to a set of non-dominated solutions–so called
Pareto-optimal front. A solution A is said to dominate so-
lution B if one or more of A’s objectives is better than the
corresponding values for B, and any remaining objectives
are equal to B’s. The dimensionality of the problem is con-
strained by the fact that the entrance and exit direction are
the same, thereby reducing the problem to two independent
inputs (2D problem). The beam and simulation parameters
are given in Tables 1 and 2.
Optimization of other properties of the beam (single- or

multi-objective) with a different geometry and restrictions
can be easily obtained by a simple extension of the paradigm
presented here.

Figure 1: Layout of the fiducial three-bend chicane. The
symmetry imposes that the B1 = B3 = −B2 and D1 = D2,
thereby making it a 2D problem. The parameters are varied
in the range 0 ≤ B1 ≤ 1 and −5 ≤ D1 ≤ −0.1.

Table 1: Beam Properties

Quantity Value

Normalized horizontal emittance 10−9 m rad
Initial energy spread −10.0m−1

Uncorrelated energy spread 10−7

Table 2: Numerical Simulations Properties

Quantity Value
Grid resolution 64 × 64
Number of simulation particles 200, 000
Number of steps along the lattice 106

Each individual simulation takes about 240 seconds to
execute on a single GPU (Tesla K40). The execution time on
multiple GPUs scales roughly as the inverse of the number
of GPUs [5, 6].

Genetic Algorithm
The genetic algorithm (GA) is a tool for multi-

dimensional, non-linear optimization that takes inspiration
from the principles of biological evolution [7, and references
therein]. GAs are well-suited for functions with many in-
terrelated variables and specifications. In addition, GAs

are highly parallelizable which suits them for computation
clusters.
The general method for a GA works by evaluating the

function for a given set of inputs (individuals). These eval-
uations are then analyzed for fitness. The individuals with
the most fit outputs are replicated, combined (recombina-
tion), and perturbed (mutation) for the next set of individuals
(generation). As the algorithm iterates over several genera-
tions, the individuals converge to the input that optimizes
the function.

GAs also excel in solving multi-objective problems with
more than one output (optimizing multiple quantities simul-
taneously). In order to achieve this, the GA determines
if a individual is dominated. A dominated individual is
one where another individual’s objectives are all more fit.
A multi-objective GA does not solve for a particular input
but rather a collection of inputs called the Pareto-optimal
front: a non-dominated set of individuals.

We use PISA platform developed at ETH Zürich [8].

Bayesian Optimization
Bayesian optimization is a sequential design strategy for

global optimization of black-box functions, which does not
require derivatives [9]. It is an example of machine learning
process in which information about previous observations
of the function to be optimized is used to determine the
next optimal point. We use GPyOpt python routine [10] to
implement the Bayesian optimization.
Bayesian optimization is by design single-objective. In

order to use it to compute multi-objective Pareto-optimal
fronts, the objective functions, say f1 and f2, as we have
here, are combined into a single objective function f as f =
c1 f1 + c2 f2, with c1 + c2 = 1, as explained in [11, Appendix
A]. In order to produce the front shown in Fig. 2 below,
constants are varied in the range c1 ∈ [0, 1] in increments of
0.1, yielding a total of 11 directions tangent to the Pareto-
optimal front [11]. All non-dominated points compose the
Pareto-optimal front from the Bayesian optimization.

RESULTS
Our intent here is to combine our new CSR code with

the two powerful tools of non-linear, multi-dimensional
optimization–GA Bayesian optimization–and compare their
performance on equal footing. The results reported in this
section are based on the two optimization tools executing
a comparable number of function evaluations. In this case,
each function evaluation is a single simulation executed on
a GPU, for parameters reported in Tables 1 and 2.

Figure 3 shows Pareto-optimal fronts obtained by roughly
the same number of function evaluations with the two op-
timizations techniques–GA and Bayesian. The two fronts
are close to each other. Their quality is estimated by their
location in relation to the two objective functions shown–the
better front is one that is farther left and down. The two
fronts agree extremely well in the low transverse emittance
(high longitudinal spread) region; in the intermediate re-
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gion the GA is slightly better, while in the high transverse
emittance (low longitudinal spread) region, the Bayesian
optimization performs better.

When plotted in search space to show where the solutions
of the two Pareto-optimal fronts lie, it is evident that the two
fronts represent vastly different sets of solutions. We will
investigate why this happens, and under which conditions
the results from the two optimization techniques converge.
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Figure 2: Pareto-optimal front from a GA with 37 gener-
ations and 20 individuals (blue triangles), and Bayesian
optimization with 770 evaluations (red squares). Each simu-
lation uses nearly the same number of function evaluations.

Figure 3: Pareto-optimal front from Fig. 2 shown in search
space. Even though the two methods produce similar-
looking Pareto fronts in objective function space, in search
space these solutions look quite different.

SUMMARY
We presented the proof of concept in which we demon-

strated that combining powerful optimization tools–GA and
Bayesian optimization–with our new CSR code [2] produces

a chicane geometry with optimal properties of the beam at
the exit. In this work, the relevant properties are beam’s lon-
gitudinal spread and its transverse emittance, but the same
powerful mechanism can easily be extended to other beam
properties.
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