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Abstract
Electron beamswith high peak current as they are required

for the operation of free-electron lasers (FELs) are often gen-

erated by means of a series of magnetic bunch compressors.

In conjunction with a collective coherent force, e.g. longitu-

dinal space-charge (LSC), bunch compressors can possibly

cause a wavelength dependent amplification of initial den-

sity inhomogeneities, potentially to an extent detrimental to

the operation of the FEL. A common model, consisting of

LSC, acceleration (kicks), and magnetic chicanes (drift-type

maps), is governed by a time-discrete Vlasov-Poisson system.

Such systems have been successfully simulated using mesh

based representations of the phase space density (PSD) and

the method of characteristics for the update step. However,

for the irregular and exotic PSDs, prevalent in FEL appli-

cations, a homogeneous high resolution discretization on a

naive rectangular mesh can be prohibitively wasteful. Here

we present an approach based on adaptive tree refinement

that addresses the complexity of the PSDs and allows for the

efficient simulation of LSC-driven micro-bunching in FELs.

INTRODUCTION
The operational principle of free-electron lasers relies on

high brightness electron bunches driving the photon energy

gain process. Bunches featuring the required peak current

cannot be produced from the gun directly but have to be

generated by the method of bunch compression. The bunch

is prepared with an energy chirp during acceleration in RF-

cavities operated at an off-crest phase. Then, due to the

energy dependent path length in a magnetic chicane the

bunch is longitudinally compressed. Usually this process is

repeated multiple times during the acceleration process. It

became apparent that such compression schemes can give

rise to an enhancement of initially existing longitudinal den-

sity inhomogeneities in the bunch, an effect known as micro-

bunching [1–4]. In the linear accelerator part of a bunch

compression stage the electrons inside the bunch interact

with the electric self-field resulting from their inhomoge-

neous distribution. This leads to a to a position dependent

variation of the electron energy and hence to the introduc-

tion of (additional) energy inhomogeneities. In the following

magnetic chicane the change of an electron’s longitudinal

position is related to its energy, so that the overall influence

of a bunch compressor can indeed lead to an amplification

or damping of a preexisting current modulation.
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The longitudinal dynamics of the electron bunch are

governed by the Vlasov-Poisson equation. In the ultra-

relativistic limit, and under the assumption that the magnetic

chicane is much shorter than the linear accelerator part and

hence neglecting energy variations due to LSC within it,

an exactly time-discrete model exists. The model [3] does

explicitly not include coherent synchrotron radiation (CSR).

The time evolution of a PSD within this model can therefore

be simulated by tracking it over the intrinsically discrete (and

long) time steps without the need for optimized step-sizes.

In this contribution we present the foundations for and

the present status of a computer code based on the Perron-

Frobenius method [5,6] that is currently under development.

PERRON-FROBENIUS OPERATOR
In a Hamiltonian system with N degrees of free-

dom the time evolution of a phase-space vector �z =(
q1, p1, . . . , qN, pN

)
between two points in time t0 and t1

is given by a symplectic map, �M1←0 : R2N → R2N , so that

�z1 = �M1←0( �z0), (1)

where �zi = �z |t=ti . It can be shown that symplectic maps are
volume preserving, d �z1 = d �z0. Conservation of probability
dictates that during the time evolution of a phase-space distri-

butionΨ : R2N → R the integrated phase-space distribution
within a volume element d�z is constant,

Ψ1( �z1) d �z1 = Ψ0( �z0) d �z0,

where Ψi = Ψ|t=ti . Under volume preserving maps, this
immediately yields a relation between the phase-space dis-

tribution at two points in time

Ψ1( �z1) = Ψ0( �z0). (2)

Hence, we see that the value of a phase-space distribution

is constant on trajectories solving the Hamilton equations of

motion. As �z0 and �z1 are connected by a symplectic, hence
invertible map from Eq. (1) follows

�z0 = �M−1
1←0( �z1) =: �M0←1( �z1).

When applied to Eq. (2) this yields

Ψ1( �z1) = Ψ0
(
�M0←1( �z1)

)
, (3)

The time-forward PSD Ψ1 is therefore fully defined by an

initial PSDΨ0 and the symplectic map �M1←0 connecting the
two points in time. This is reflected by the introduction of the
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Perron-Frobenius operatorM : L1(R
2N,R) → L1(R

2N,R)
associated to the map �M , which is defined by its action on a
real-valued function g

(M g)(�z) := g
(
�M−1(�z)

)
. (4)

Here L1(A, B) denotes the Banach space of absolute
Lebesgue integrable functions from A to B. In passing we
note that the PSDs are elements of the (infinite dimensional)

unit sphere inL1(R
2N,R). With this Eq. (3) can be rewritten

as

Ψ1(�z) = (M1←0 Ψ0)(�z), (5)

or simply Ψ1 = M1←0 Ψ0. When describing collective

effects �M and thusM will depend on the initial phase-space

distribution Ψ0, so that we arrive at

Ψ1(�z) = (M[Ψ0]1←0 Ψ0)(�z), (6)

or simplyΨ1 =M[Ψ0]1←0 Ψ0. For time continuous systems
this evolution is described by the Vlasov equation ∂tΨ =
{H[Ψ],Ψ}. Then the dependence of �M andM onΨ0 is only

formal and makes sense only in the limit of small time steps

t1 − t0. We will see, however, that under the assumptions of
our model the discrete-time system becomes exact.

MULTI-STAGE BUNCH COMPRESSION
In order to investigate the influence of multi-stage bunch

compression on the longitudinal phase-space distribution of

an electron bunch we use a straightforward model for the

effects of the involved beam-line elements. In this model [3]

a compression stage is thought of as being composed of

three distinct elements; a string of RF-cavities increasing

the particle’s energy, a magnetic chicane causing an energy

dependent longitudinal translation, and a drift space con-

necting both as illustrated in Figure 1. We will see soon

that the cavities and the LSC free space drift can in fact be

combined. The magnetic chicane is assumed to be much

shorter than the linear accelerator part comprising the cavity

and the drift space, to the extent that LSC-effects within this

region can be neglected. Inside the cavity a particle gains an

certain amount of energy which is dependent on its arrival

time, which is modeled by a kick-type map

Kcav :
(
q
p

)
→

(
q

p + Δpcav(q)

)
,

where q is the particle’s longitudinal position relative to
the reference particle q = z − z0 and p being the deviation
from the reference particle’s energy p = E − E0. The path
length of an particle in a magnetic chicane is dependent on

its energy. Hence, its effect is given by a drift-type map

Dchi :
(
q
p

)
→

(
q + Δq(p)

p

)
.

We consider LSC effects only in the drift spaces (and in the

cavities). They describe the change of a particle’s energy

due to interaction with the self-fields generated within the

Kcav,LSC[Ψ] Dchi

lLinAcc lchi � lLinAcc

Figure 1: Illustration of the model used for one bunch-

compressor stage including the associated Perron-Frobenius

operators.

bunch as a result of inhomogeneities in the longitudinal

charge density Qbunch ρ(q). This spatial density is given as
the projection of the PSD onto the spatial axis

ρ[Ψ](q) =
∫ ∞

−∞

dpΨ(q, p).

The electric self-field in the bunch rest frame and hence

the force acting on a particle is, in general, a functional

of ρ(q), usually found by solving the appropriate Poisson
equation accounting for the transverse shape of the bunch.

The resulting force acting on a particle is independent on

its energy, so that the LSC effects can be described by the

kick-type map

KLSC[Ψ] :
(
q
p

)
→

(
q

p + G[ρ](q)

)
,

where velocity effects are neglected in the ultra-relativistic

limit. It is important to note that the spatial density ρ[Ψ] is
invariant under kick-type maps,

ρ[Ψ1] = ρ[K1←0 Ψ0] =

∫ ∞

−∞

dpΨ
(
q, p − Δp(q)

)
= ρ[Ψ0].

Because of this invariance the effect of LSC over a finite

distance in a non-dispersive section in the beam line can be

described by a single, time-discrete Perron-Frobenius step.

As can be seen, all maps used in this model are trivially

invertible, e.g. the inverse of the combined acceleration and

LSC kick is simply

K−1
cav,LSC[Ψ] :

(
q
p

)
→

(
q

p − G[ρ](q) − Δpcav(q)

)
,

so that the associated Perron-Frobenius operators

Kcav,LSC[Ψ] and Dchi are easily found. Hence, the phase-
space distribution Ψn after the n-th bunch-compressor stage
is given by

Ψn = Dchi,n−1 Kcav,LSC,n−1[Ψn−1] Ψn−1. (7)

We note again that the step n → n + 1 is from one bunch
compressor stage to the next.
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Figure 2: Illustration of the quadtree domain decomposition

approach applied to a hypothetical phase-space density with

a maximum recursion depth of six.

TREE-BASED MESHING
Electron bunches in FELs often times feature an exotic

longitudinal phase-space distribution, in the sense that large

regions of the phase space are empty whereas most of the

probability is confined in a thin, band-like structure. In ad-

dition, the expected micro bunching occurs on length scales

much shorter than the overall bunch length. For a computer

code discretizing the approach (7) this leads to the need for

a sophisticated internal representation of the PSDs. The

naive approach of sampling the PSDs on a homogeneous

mesh spanning a rectangle around the phase-space region

of interest and with a resolution high enough to resolve the

micro bunching leads to large amounts of memory and com-

putation time being wasted on processing the large regions

where effectively Ψ(q, p) = 0. To address this problem in
our code, we implement the representation of the PSD on

an adaptive grid tree, allowing for high resolution in regions

where Ψ(q, p) � 0 while storing the empty regions with only
coarse resolution. This is achieved by recursively subdivid-

ing a rectangular phase-space region into four geometrically

similar, non-overlapping rectangles, effectively resulting in

a quadtree domain decomposition. The recursion stops at

a suitable condition, e.g. when reaching a rectangle that

contains an integrated PSD smaller than a threshold ε , or a
maximum recursion depth is reached. Ψ(q, p) is then sam-
pled on a equidistant grid covering this final leaf-rectangle

and only these values are stored in memory. An example

of the resulting phase-space decomposition is illustrated in

Figure 2. In order to evaluate the resulting representation of

Ψ at an arbitrary (in general off-grid) point an interpolation

scheme based on the function values for the leaf-rectangle

containing this point is employed.

Having this efficient data structure at hand the Perron-

Frobenius steps needed for the evaluation of Eq. (7) can

Algorithm 1 Perron-Frobenius Steps
1: Initialize Ψ0 as tree-mesh from input, e.g. a smooth

function or a particle distribution, as described above

2: for n = 1, . . . , NBC do
3: Calculate kicks by projecting Ψn−1 to ρn−1 and solve

Poisson’s equation to determine �Mn←n−1[Ψn−1]
4: Extract an ensemble of points pts representative for

the shape of Ψ, e.g. corner points of the leafs

5: Calculate forward tracked points pts_fwd by apply-
ing �Mn←n−1[Ψn−1] to pts

6: Based on pts_fwd initialize coarse forward mesh
7: Update forwardmesh by samplingMn←n−1 Ψn−1 and

refine/coarsen where necessary, yielding Ψn on an

optimized tree-mesh

8: end for

be executed computationally as outlined in Algorithm 1.

By first determining a coarse forward mesh which is later

adjusted, this algorithm aims to reduce the computation-time

intensive tracking of points as much as possible. Adjustment

includes the further refinement of rectangles but also the

possibility to coarsen them, depending on the local behavior

of the PSD. As a result of the assumed continuity of Ψ

a clear sign for the need for further refinement is if Ψ >
ε on the edge of a leaf-rectangle leading to a non-refined
area. A further condition necessary for a successful Perron-

Frobenius step that can easily be checked is the conservation

of probability
∫
Ω⊂R2

Ψ d�z = 1 within the area Ω covered by
the forward mesh.

OUTLOOK
We expect an efficient simulation code based on the pro-

posed method to be a useful tool to evaluate bunch compres-

sion schemes of existing accelerators with regard to their

susceptibility to the LSC-driven micro-bunching instability,

as well as to gain a better understanding of the underlying

amplification process, potentially leading to new concepts

to mitigate the undesired effects.
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