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Abstract

YACS is a 2.5D finite element method solver capable

of solving for the full 3D eigenfrequency spectra of reso-

nant axisymmetric structures while reducing the computa-

tional problem to a 2D rotation plane. The most recent revi-

sion of the code introduced arbitrary order basis functions

and curved meshes, for both triangular and quadrilateral

unstructured meshes. This led to significant increases in

convergence rates. However, due to the utilization of curved

meshes and the complex coordinate transformations that

are involved, spurious modes were introduced when solving

the axisymmetric problem. Although workarounds do exist

that circumvent these issues by lowering the likelihood and

frequency of spurious modes, linear triangular meshes with

higher order basis functions were chosen due to their simplic-

ity and spurious free solutions. In order to further support

the usage of spline cavities as an alternative parameteriza-

tion scheme to the well known elliptical cavities, extensive

parameter space scans were carried out for non-reentrant

spline shaped microwave cavities. In addition a new op-

timization strategy is presented that exploits the arbitrary

polynomial order of Bézier curves by utilizing the degree

elevation technique.

INTRODUCTION

The design and optimization of modern superconducting

multicell microwave cavities heavily relies on numerical

studies. Due to the complex curved shapes and the broad

frequency spectra of those cavities, numerical studies typi-

cally require ≥ 105 degrees of freedom to obtain accurate

discretization, of both the geometry and the field. To reduce

the required degrees of freedom the 2.5D finite element

solver YACS has been implemented [1]. YACS is capable

of solving for the full 3D eigenfrequency spectra of axisym-

metric cavities while reducing the problem geometry to a

2D rotation plane. In addition, the code supports arbitrary

polynomial order hierarchical function bases [2, 3] for the

field discretization. Studies presented earlier showcased the

usage of curved elements on 2D problems, to further reduce

the required degrees of freedom [4] while introducing spu-

rious modes when solving the axisymmetric problem. To

circumvent this problem, linear triangular elements have

been used in this work to explore the parameter space of

cubic spline cavities and perform optimization studies on

higher order spline cavities.

∗ Work supported by the BMBF under contract no. 05K13PEB
† benjamin.isbarn@tu-dortmund.de

NUMERICAL STUDIES
All following numerical studies that involve spline cavi-

ties were tuned via the equator radius to maintain a design

frequency of νdesign = 1.3 GHz. The cavity length was set to

L = βλ/2 with β = 1. Discretization of the problem domain

was performed with GMSH [5] and the OpenCASCADE [6]

kernel, that supports Bézier curves of degree n ≤ 20. Refer

to [7] for a thorough description of the figures of merits used

throughout this work.

Convergence Studies
Convergence studies involving the eigenfrequency spectra

of a pillbox cavity have been carried out, in order to demon-

strate the reduction of degrees of freedom required for a

given discretization accuracy when using YACS. The con-

vergence results for the first mono- and dipole mode, with

varying polynomial order p of the field function basis, are

displayed in Fig. 1 and 2.
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Figure 1: Relative eigenfrequency deviation σf of the first

monopol mode of a pillbox resonator, obtained from YACS

and COMSOL as a function of the number of degrees of

freedom ndof for different polynomial orders p of the function

basis. The frequency deviations were calculated with respect

to the analytical solution.

As a reference the studies include the convergence rates

obtained from COMSOL’s [8] axisymmetric and 3D solver 1.

It is immediately visible that YACS drastically lowers the de-

grees of freedom required to yield discretization accuracies

1 The version of COMSOL used in this study yields spurious modes when

using an azimuthal mode number m � 0 within the axisymmetric solver

module.
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Figure 2: Relative eigenfrequency deviation σf of the first

dipole mode of a pillbox resonator, obtained from YACS

and COMSOL (3D) as a function of the number of degrees

of freedom ndof for different polynomial orders p of the

function basis. The frequency deviations were calculated

with respect to the analytical solution.

that are similar to commercial 3D and even 2.5D codes. The

convergence rates show expected behavior with increasing

polynomial degree of the field function basis, except for the

last two orders which yield discretization accuracies close to

machine precision, considering the complex sparse matrix

algorithms used [9, 10]. In addition it was observed that

spurious free solutions for multipole modes could only be

obtained with the out of plane function basis order increased

by one with respect to the in plane function basis.

Spline Cavities
The curved boundary of superconducting multicell mi-

crowave cavities is usually parameterized by ellipses and

extensive studies for these shapes have been performed

e.g. [11]. However there are alternative parameterizations

available. This work explores the subset of cavities that

utilize Bézier curves to represent the curved boundaries,

hereafter referred to as spline cavities [12]. A Bézier curve

is a parametric curve with the control points Pi defined as

B(t) =
n∑
i=0

bi,n(t)Pi, 0 ≤ t ≤ 1

and the Bernstein basis polynomials

bi,n(t) =
(
n
i

)
ti (1 − t)n−i , i = 0, . . . , n.

This parameterization is inherently flexible since it can rep-

resent curves of arbitrary polynomial degree and thus is very

well suited for optimization problems.

Parameter Space Scan
Previous studies [12] already explored parts of the param-

eter space of cubic spline cavities using SUPERFISH [13].

However, those studies did not include the whole subset of

cubic spline cavities in the non-reentrant regime. To sup-

port the results obtained with SUPERFISH, and to further

explore the parameter space, parameter scans for the com-

plete non-reentrant regime were carried out. The results

of the parameter scan are displayed in Fig. 3. Since the

Esurf,max/Eacc ratio is very sensitive to the discretization of

the curved boundary, only values below ≤ 3.0 have been

considered in the figure as values above 3.0 usually are not

appropriate for high power superconducting microwave cav-

ities and will often be discarded by cavity designers.
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Figure 3: Parameter space scan for the subset of spline pa-

rameters within the non-reentrant regime of cubic spline

cavities. Displayed are the figures of merit Esurf,max/Eacc,

R/Q and the coupling constant κ for the TM010,π-Mode. The

red cross represents the final cubic spline parameters for the

optimization of the cost function (see Fig. 4).

Higher Order Spline Cavity Optimization
In contrast to the well known elliptical parameterization

of superconducting multicell cavities, spline cavities can

represent arbitrary curves due to their polynomial definition

of arbitrary degree. This property was exploited in order to

implement an efficient optimization algorithm based on a

technique called degree elevation. Using a simple algorithm

the polynomial degree of a Bézier curve can be increased

without altering the shape. If a lower degree spline cavity

can not be optimized to reach certain design criteria, its

shape can be used as the starting point for a higher degree

spline cavity for further optimizations. Since lower degree

spline cavities have less degrees of freedom in the form of

control points, those optimizations can usually be performed

far more efficient with less iterations required. The control
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Figure 4: Optimized shapes and their respective control points for the different spline orders in ascending order. Each shape

optimization for n > 4 used the optimization result of the previous order as the initial guess, utilizing the degree elevation

algorithm. In the case of cubic spline cavities the parameters v1 and v2 represent the only degrees of freedom of the curve,

since the r-coordinates are fixed due to the C1 continuity requirements [12].

points P′
i of a Bézier curve with degree n + 1 that has the

same shape as the underlying Bézier curve of degree n with

the control points Pi can be calculated with

P′
i =

i
n + 1

Pi−1 +
n + 1 − i

n + 1
Pi, i = 0, . . . , n + 1.

Bézier curves have another interesting property for cavity

designers, since their derivative B′(t) at the endpoints of the

curve depend only on the first resp. last two control points,

C1 continuity can always be guaranteed for arbitrary degrees,

by simply constraining the mentioned control points. To

demonstrate the capabilities of this optimization algorithm

a cost function based on the observations of the parameter

scan of cubic spline cavities (see Fig. 3) was used.

f (Λ) =
(

Esurf,max

Eacc
(Λ) /1.6 − 1

)2

+

(
R
Q

(Λ) /114Ω − 1

)2

where Λ represents the problem domain. This cost function

was chosen on purpose since it fails to be minimized to zero

for cubic spline cavities. The obtained optimization results

for the different iteration stages with varying degree of the

spline cavity are listed in Table 1. The corresponding cavity

shapes and the respective control points are displayed in

Fig. 4. The spline parameters of the cubic spline cavity are

also display in Fig. 3. Using spline cavities up to a degree

of 6 the cost function could almost be halved. It should

be obvious that the obtained shapes could not possibly be

obtained with elliptical parameterizations. Thus it can be

concluded that spline cavities are far more flexible, can be

optimized more efficiently and due to their polynomial nature

can be constrained far more easily.

Table 1: Optimization results for the different spline cavities

with polynomial order p of the Bézier curve

p Esurf,max
Eacc

R
Q /Λ f (Λ) /10−3

3 1.668 106.779 5.835

4 1.641 108.538 2.961

5 1.650 109.210 2.757

6 1.647 109.414 2.498

CONCLUSION

The latest iteration of YACS supports arbitrary order hi-

erarchical function bases within linear triangular elements.

It could be shown that this combination results in a vastly

reduced number of degrees of freedom required to obtain

comparable discretization accuracies compared to 3D codes.

The parameter space of cubic spline cavities has been further

explored and now covers the whole non-reentrant regime.

To further support the usage of spline cavities as an alter-

native parameterization, a new optimization strategy has

been introduced. It was demonstrated that this strategy can

help reaching design criteria that would otherwise not be

reached with simple cubic or even elliptical cavities. Thus

rendering spline cavities to be far more flexible than com-

mon microwave cavity parameterizations. In addition it was

observed that spurious free solutions could only be obtained

for out of plane function bases that have a higher polyno-

mial degree than their corresponding in plane function bases,

when solving for multipole modes. This observation could

be beneficial for the ongoing work to support curved ele-

ments for axisymmetric problems.
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