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Abstract

Understanding and diagnosing the state of a particle accel-
erator requires navigating high-dimensional control system
data, often involving hundreds of interdependent parame-
ters. We propose a novel multimodal embedding frame-
work that jointly learns representations of machine states
from both numerical control system readouts and natural
language descriptions. This enables the translation of com-
plex machine conditions into human-readable summaries
while maintaining fidelity to the underlying physical system.
The obtained embeddings are subsequently adapted to an
open-weights large language model via cross-attention con-
ditioning. We demonstrate a first implementation trained
on European XFEL machine state data. This work covers
the embedding model architecture, training methodology,
and presents initial examples demonstrating the model’s ca-
pabilities in action. Due to the general concept of machine
state, the model can be easily adapted to other facilities and
control system environments.

INTRODUCTION

Particle accelerators are complex machines with numer-
ous interconnected subsystems. Their state at any moment is
defined by parameters like magnet currents, beam positions,
and RF voltages, all monitored by control systems. We in-
troduce the concept of Machine State as a novel modality
for large language models (LLMs). Unlike traditional mul-
timodal models that use e.g. images, we feed the machine
state as tuples of control system addresses and values. This
enables LLMs to interpret accelerator states and provide
informed responses.

In this study, we use machine states from the European
XFEL [1], derived from Machine Catalog Files containing
thousands of tuples. These states are enriched with meta-
data like operation modes. We also present initial examples
demonstrating the capabilities of our current model, which
enhances the open-weights model Mistral-7B [2]. These
examples showcase how the integrated system can provide
state-informed responses to user queries.

Integrating machine state data with LLMs can revolution-
ize accelerator operations, enabling real-time troubleshoot-
ing and optimization. The following sections detail the em-
bedding model for converting machine states into LLM-
compatible formats and the cross-attention based adapter
facilitating this integration.
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RELATED WORK

In this work, we adapt the intermediate layers of a LLM
by adding a vector generated by a multimodal adapter. This
process of input adaptation is functionally a form of output
control, which directly links our approach to the field of ac-
tivation steering, also known as representation engineering.

Activation steering modifies an LLM’s behavior at infer-
ence time by adding steering vectors to its internal activation
states to guide generation towards desired concepts. For a
survey of the field, see [3,4]. This technique has been suc-
cessfully applied to control a range of abstract behaviors,
with some examples like mitigation of toxicity [5] and im-
provements to model safety [6].

Our work demonstrates that a cross-attention adapter layer
makes this steering connection explicit and dynamic by us-
ing machine states, passed as the adapter’s input, to steer
the model toward specific outputs that characterize the ma-
chine’s state.

MACHINE STATE

The state of the particle accelerator at a given point in
time is approximated by all available readback and setpoint
values the control system provides. These values include
mostly machine-related properties such as magnet currents,
but also beam properties and various other performance
measures. A snapshot of all of these values constitutes what
we consider, in the context of this work, a Machine State.
As stated in the introduction, the goal is to introduce ma-
chine state as a second modality to the prompt of an LLM,
in order to enable the LLM to interpret the state and gener-
ate state-informed answers to a user query. Existing mul-
timodal models, such as GPT-5 [7], accept image data as
a second modality. Here, the machine state is fed to the
modified LLM as a list of tuples of the form (address
[str], value [float, int, bool, str]). Each tu-
ple contains a control system address, as well as the corre-
sponding value, which can be numerical, boolean, or a text
string.

For this particular study machine states of the European
XFEL are used. The states are constructed from so-called
Machine Catalog Files, which are machine state files used
to document the machine state, as well as to restore machine
setups. These files initially contain approximately 15000
(address, value) tuples, which are reduced to ~ 5000
through redundancy removal and filtering. Additionally, we
enrich each machine state with operational metadata includ-
ing the requested operation mode and other user require-
ments.
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EMBEDDING MODEL

In order to interface the machine states with the large lan-
guage model, they have to be transferred to the embedding
space of the model. This means the machine state has to
be converted from a list of tuples to an N-dimensional em-
bedding vector. To this end, a two stage approach is chosen.
First, the individual tuples are embedded, then a machine
state embedding model is used to coalesce the individual
tuple embeddings into a comprehensive single machine state
embedding vector, which can be fed into an LLM. Our im-
plementation utilizes PyTorch [8] and the Hugging Face
transformers framework [9].

Tuple Embedding

As stated above, each tuple is of the form
(address [str], value [float, int, bool,
str]). In the case of the European XFEL, con-
trol system addresses always consist of four parts,
FACILITY/DEVICE/LOCATION/PROPERTY, as required
by the DOOCS control system [10]. This hierarchical
structure allows us to extract sematic information. A custom
tokenizer is used to transform the tuples into sequences of
token IDs. The tokenizer uses four custom vocabularies,
which are compiled from all registered control system
properties (see Table 1).

Table 1: Tuple Tokenizer Vocabularies

Name Number of tokens
Facility 18

Device 1352
Location 18098
Property 71421

Numerical values are not converted into token IDs but
are used as is. The tokenizer hence encodes the tuple into
a new tuple of 6 integers (facility_id, device_id,
location_id, property_id, value_type, value).
The encoded tuple is then subsequently fed into the
emnbedding model, which converts it into a 5 x 200
dimensional vector. This is achieved by using 200 element
wide nn.Embedding layers for the address-related IDs
and 200 element wide nn . Linear layers for the numerical
values. The output is the concatenation of all individual
embedding vectors and hence of dimensionality 5 x 200.
The embedding model is trained using a single task classifier
with the layout nn.Linear (1000, 64) -> nn.ReLu()
-> nn.Linear (64, num_tokens), where num_tokens
is given by the task. For this study, the model was chosen to
focus on facility separation and hence num_tokens = 18.
A t-SNE [11] visualization of the result is shown in Fig. 1,
revealing multiple clusters as expected.

Machine State Embedding

So far the semantics of single machine component tuples
are captured using the tuple embeddings. These embeddings
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Figure 1: t-SNE visualization of the single tuple embedding
model, trained on facility IDs. Different colors correspond
to different facility IDs. Note that there can be multiple
clusters per facility ID as device, location, and property IDs
are not visualized.

now need to be combined into a single machine state embed-
ding to be fed into the LLM. The machine state embedding
model incorporates the pre-trained and frozen tuple embed-
ding model. In addition, the state semantics are captured
using both a positional embedding layer, as well as a trans-
former block, which implements self-attention [12]. The
positional embedding is naturally derived from the order of
the tuple list, which corresponds loosely to the actual ma-
chine layout. Finally, attention pooling is used to arrive at a
single 5 x 200 dimensional machine state embedding vec-
tor. In addition to this, the model also outputs the attention
scores of the pooling process.

The model is trained using a multi-task classifier model
with three heads sharing the layout nn.Linear (1000,
256) -> nn.ReLu() -> nn.Linear(256, 128) —>
nn.ReLlu() -> classifier_head. During training the
loss is calculated as the sum of all three individual cross-
entropy loss values. The first head classifies performance
as above, within, or below median w.r.t. FEL pulse energy,
resulting in 3 classes. The second head is the operation
mode head, which classifies the operation mode in terms
of FEL photon energy. The data is binned into 30 different
classes. Finally, the third head classifies the final electron
energy in the linear accelerator. Here, 20 different classes
are distinguished.

The goal of the training process is to arrive at a model
which clusters different machine states according to the FEL
operation modes (photon, as well as electron energy), as
well as machine performance. Figure 2 shows a t-SNE visu-
alization of the result for each classification head. It can be
seen that the model clearly separates the states into distinct
clusters.
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Figure 2: t-SNE visualization of the machine state embedding model with three different color maps for each of the

classification heads.

LANGUAGE MODEL ADAPTER

In the previous sections the encoding of a machine state,
represented by a list of (address, value) tuples, into a
machine state embedding vector is described. Through the
use of methods such as t-SNE visualization, this vector is
already useful as it allows the observation of transitions be-
tween different operation modes and performance classes.
The main goal of this study, however, is to allow a large
language model to directly interpret machine state and com-
ment on it. To this end, an adapter between the machine
state embedding and the language model has to be designed
and trained. In this section, this adapter is described.

As stated above, the machine state embedding model not
only outputs the 1000-dimensional embedding vector, but
also the attention scores. These attention scores are a mea-
sure of the importance of certain elements within the ma-
chine state defining tuple list with respect to the location of
the state vector in embedding space. In simple terms, the
attention scores describe why a given machine state is sorted
into a given embedding space cluster. Since different oper-
ation modes require specific machine setups, each cluster
should have a unique default attention structure, which is
what defines the cluster in the first place. Hence, in order to
describe the machine state in detail, delta attention scores
relative to the average attention of the cluster are used. Us-
ing delta attention, differences from a baseline setup can be
taken into account.

In order to train the LLM adapter, a dataset with pairs
of machine state embedding vector and a verbalization of
the machine state has to be created. This is where the delta
attention scores can be used. Using an open-weights LLM
and prompt engineering based on delta attention and the
original tuple list, the dataset can be created. For this study,
the open-weights model 11ama3-70B [13] by Meta was
used.

The machine state embedding to LLM adapter is based
on a cross-attention scheme that integrates the structured
machine state information directly into the transformer ar-
chitecture. In this setting, the hidden states of the LLM are
augmented inside multiple selected layers by attending to a
set of latent vectors derived from the machine state embed-
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ding vector. Concretely, the machine state embedding is first
projected into a fixed number of latent vectors whose dimen-
sionality matches the hidden size of the LLM (e.g., 4096 for
Mistral-7B [2]). In simple terms, these latent vectors can
be interpreted as a compressed set of tokens that summarize
different aspects of the machine state. Rather than exposing
the full state vector to the LLM, the projection learns to
distill the most relevant information into a small number of
vectors. During cross-attention, the LLM’s hidden states
act as the Queries (Q), while the latent vectors provide the
Keys (K) and Values (V). This design allows each token
representation in the LLM to selectively extract information
from the machine state, focusing only on the latent vectors
that carry relevant signals. The output of the cross-attention
module is then added back to the hidden states, scaled by a
tunable conditioning strength factor «. This enables a con-
trolled degree of influence from the external machine state
and is added to the modified LLM as a new hyperparameter.
Figure 3 shows a schematic of the adapter used in this study.

The cross-attention approach stands in contrast to
retrieval-augmented generation (RAG), where external in-
formation, e.g. machine state, is typically introduced by
converting it into natural language tokens and appending it
to the prompt. While RAG effectively expands the model’s
accessible context, it relies on prompt engineering and is
limited to indirect influence at the input level. By integrating
the machine state at the model level through cross-attention,
tighter coupling, more fine-grained conditioning, and more
efficient utilization of structured representations is enabled
compared to what is achievable through prompt-only aug-
mentation.

In practice, the modified LLM can be prompted as any
other model. If no machine state is provided, the adapter
is skipped and the model behaves just like the unmodified
version. The same is true if @ = 0.0. A two stage approach
was found to be most useful, combining the cross-attention
scheme with RAG. In this case the model is first prompted
with a valid machine state and @ > 0.0. The model tempera-
ture is set to 0 in order to get precise answers for numerical
values. Then, « is set to 0.0 and the initial output is added to
the query. The model temperature can be set to any non-zero
value now, if required.
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Figure 3: Schematic of the LLM cross-attention adapter.
The machine state embedding is projected into the tensor
H, holding Ny, latent vectors compatible with the model’s
hidden state size. The weight matrices W, Wi, W,, are train-
able. The conditioning factor « is fixed during training. The
adapter logic is applied to a limited set or all of the model’s
transformer layers.

EXAMPLES

In this section examples are given, based on the open-
weights model Mistral-7B-Instruct-v0.3 [14]. The
cross-attention adapter is configured according to Table 2
Training is done using a dataset of 2700 machine state ver-
balizations for 370 epochs. It can be seen that as « is reduced
below the training value of 0.2, the model starts to mix up
information and finally the influence of the machine state
embedding is so low that the model does not know how to
answer the query at all. For o > 0.2 model breakup can be
observed.

Please report on the current machine performance.

JACoW Publishing
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Table 2: Cross-Attention Adapter Parameters

Parameter Value
Machine state embedding size 1000
Base model hidden size 4096
Number of latent vectors Ny, 32
Number of attention heads 32
Trainable parameters 608 million
Injection layers (8, 16, 24, 30)

Training Data

The performance of SASE1 beamline is below median,
operating at 6.0 keV mode with an energy of 11.5 GeV
and intensity of 0.5 mJ. The primary reason for this
subpar performance appears to be issues in the undu-
lator setup periods at various positions along the SA1
beamline, specifically around 2363m, 2370m, 2376m,
2382m, and 2394m, which may indicate a problem with
the FEL wavelength control or photon wavelength con-
trol.

Output (@ — 0.2)

The current performance of the SASE1 beamline is
below the median. The machine is operating at 6.0 keV
mode with an energy of 11.5 GeV and an intensity of 0.5
mJ. The main issue causing this subpar performance is
a problem with the undulator setup at various positions
along the SA1 beamline, particularly around 2363m,
2370m, 2376m, 2382m, and 2394m. This could be
indicative of an issue with the FEL wavelength control
or photon wavelength control.

Output (@ — 0.18)

The current performance of SASE1 beamline is below
median, with an output of 6.0 mJ. This subpar perfor-
mance is primarily due to issues with the undulator
setup periods in several sections of the beamline, specif-
ically around the 2400-2437 meter mark, which could
potentially be a sign of a decoupling or tunnel access
problem in those areas.
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To report on the current machine performance in an op-
erational state, I would need to refer to the data collected
from the PCS performance monitor (PPM) and the RF
system analysis. The data from these tools can provide
insights into the machine’s performance in terms of
its target speeds, acceleration and deceleration rates,
and the control of various system parameters such as
temperature, pressure, and power.

Unfortunately, as a text-based AI model, I do not have
the ability to access or interpret real-time performance
data from a specific machine. I can only provide in-
formation based on the information you have provided
about the machine state and the factors that can influ-
ence its performance.

In the case of the machine in the "operational" or "run-
ning" state that you have described, if the PCS and RF
systems are well-designed and well-maintained, the ma-
chine is likely to be performing optimally according to
its design specifications. However, for a more accurate
and detailed report on the current machine performance,
it is recommended to consult the PPM and RF system
analysis data from the specific machine in question.

The is a high performance is below, operating at 1. is
domination and control, operating in the SASE intorator
and the 2nd and 3’s contributing REASEntory is to
support the overall performance, with an intensity of
0.4 mJ.

CONCLUSION AND OUTLOOK

We have presented the first implementation of a multi-
modal large language model capable of directly interpreting
particle accelerator machine states. The system, built upon
the open-weights model Mistral-7B-Instruct-0.3,
achieves multimodality through a custom machine state
embedding module and cross-attention adapter. The ma-
chine state embedding model uses a custom (address,
value) tokenizer for machine state (address, value)
tuples. First, results are promising, but more work is re-
quired to better understand the potential of this approach.
The following points need to be addressed.

In this study, the amount of training data was limited to
2700 machine states, which corresponds to approximately
one year of machine state history. In addition, the machine
state verbalizations were limited to just one possible wording
and the initial prompt was kept the same. In future iterations
of the training process, the dataset will hence be extended
in both the number of included machine states, as well as
verbalization variety. Especially the increased variety of
prompt / wording combinations may render the two-stage
prompting approach unnecessary.

In addition to enhancing the training data, the layout and
hyperparameters of the model need additional exploration.
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The current version of the model is trained with @ = 0.2,
leaving 80 % control to the base model. Also, for the current
model a balanced injection strategy was chosen, injecting
into the 8th, 16th, 24th, and 30th transformer block of the
base model. Other strategies could be to only condition
the first few blocks, leaving deeper reasoning untouched.
Conversely, only the last blocks could be conditioned exclu-
sively. In addition, the number of latent vectors, as well as
the number of attention heads in the adapter can be varied.

In order to reduce computational cost, the relatively small
base model Mistral-7B was chosen. Using a larger base
model could benefit model performance. Larger models
have stronger general reasoning, better domain language
capabilities, and fewer failure modes. Also, large instruct-
aligned models might generalize better from small adapter
datasets to unseen machine states and prompt variations.

The most important part of a follow up study, however,
will be finding suitable performance metrics. To this end,
simulation-based machine states can enable a proper attri-
bution study, as machine parameters can be adjusted freely
and independent of real world user operation.

In conclusion, we have shown a first promising version of a
machine state embedding model coupled to an open-weights
large language model using cross-attention conditioning.
Further enhancements to the model and proper attribution
studies are expected to bring the model closer to day-to-day
operation use-cases, such as anomaly detection, automated
shift reporting and general operator assistance.
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