TY - CONF AU - Leputa, M.F. AU - Baker, K.R.L. AU - Romanovschi, M. ED - Schaa, Volker RW ED - Götz, Andy ED - Venter, Johan ED - White, Karen ED - Robichon, Marie ED - Rowland, Vivienne TI - A Workflow for Training and Deploying Machine Learning Models to EPICS J2 - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023 CY - Cape Town, South Africa T2 - International Conference on Accelerator and Large Experimental Physics Control Systems T3 - 19 LA - english AB - The transition to EPICS as the control system for the ISIS Neutron and Muon Source accelerators is an opportunity to more easily integrate machine learning into operations. But developing high quality machine learning (ML) models is insufficient. Integration into critical operations requires good development practices to ensure stability and reliability during deployment and to allow robust and easy maintenance. For these reasons we implemented a workflow for training and deploying models that utilize off-the-shelf, industry-standard tools such as MLflow. Our experience of how adoption of these tools can make developer’s lives easier during the training phase of a project is discussed. We describe how these tools may be used in an automated deployment pipeline to allow the ML model to interact with our EPICS ecosystem through Python-based IOCs within a containerized environment. This reduces the developer effort required to produce GUIs to interact with the models within the ISIS Main Control Room as tools familiar to operators, such as Phoebus, may be used. PB - JACoW Publishing CP - Geneva, Switzerland SP - 244 EP - 248 KW - controls KW - EPICS KW - GPU KW - framework KW - software DA - 2024/02 PY - 2024 SN - 2226-0358 SN - 978-3-95450-238-7 DO - doi:10.18429/JACoW-ICALEPCS2023-TU1BCO01 UR - https://jacow.org/icalepcs2023/papers/tu1bco01.pdf ER - TY - CONF AU - Romanovschi, M. AU - Finch, I.D. AU - Howells, G.D. ED - Schaa, Volker RW ED - Götz, Andy ED - Venter, Johan ED - White, Karen ED - Robichon, Marie ED - Rowland, Vivienne TI - Extending Phoebus Data Browser to Alternative Data Sources J2 - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023 CY - Cape Town, South Africa T2 - International Conference on Accelerator and Large Experimental Physics Control Systems T3 - 19 LA - english AB - The Phoebus user interface to EPICS is an integral part of the new control system for the ISIS Neutron and Muon Source accelerators and targets. Phoebus can use the EPICS Archiver Appliance, which has been deployed as part of the transition to EPICS, to display the history of PVs. However, ISIS data has and continues to be stored in the InfluxDB time series database. To enable access to this data, a Python application to interface between Phoebus and other databases has been developed. Our implementation utilises Quart, an asynchronous web framework, to allow multiple simultaneous data requests. Google Protocol Buffer, natively supported by Phoebus, is used for communication between Phoebus and the database. By employing subclassing, our system can in principle adapt to different databases, allowing flexibility and extensibility. Our open-source approach enhances Phoebus’s capabilities, enabling the community to integrate it within a wider range of applications. PB - JACoW Publishing CP - Geneva, Switzerland SP - 355 EP - 358 KW - EPICS KW - database KW - controls KW - interface KW - experiment DA - 2024/02 PY - 2024 SN - 2226-0358 SN - 978-3-95450-238-7 DO - doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO08 UR - https://jacow.org/icalepcs2023/papers/tumbcmo08.pdf ER - TY - CONF AU - Finch, I.D. AU - Aljamal, B.R. AU - Baker, K.R.L. AU - Brodie, R. AU - Fernández-Hernando, J.-L. AU - Howells, G.D. AU - Kurup, A. AU - Leputa, M.F. AU - Medley, S.A. AU - Romanovschi, M. ED - Schaa, Volker RW ED - Götz, Andy ED - Venter, Johan ED - White, Karen ED - Robichon, Marie ED - Rowland, Vivienne TI - Progress of the EPICS Transition at the Isis Accelerators J2 - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023 CY - Cape Town, South Africa T2 - International Conference on Accelerator and Large Experimental Physics Control Systems T3 - 19 LA - english AB - The ISIS Neutron and Muon Source accelerators have been controlled using Vsystem running on OpenVMS / Itaniums, while beamlines and instruments are controlled using EPICS. We outline the work in migrating accelerator controls to EPICS using the PVAccess protocol with a mixture of conventional EPICS IOCs and custom Python-based IOCs primarily deployed in containers on Linux servers. The challenges in maintaining operations with two control systems running in parallel are discussed, including work in migrating data archives and maintaining their continuity. Semi-automated conversion of the existing Vsystem HMIs to EPICS and the creation of new EPICS control screens required by the Target Station 1 upgrade are reported. The existing organisation of our controls network and the constraints this imposes on remote access via EPICS and the solution implemented are described. The successful deployment of an end-to-end EPICS system to control the post-upgrade Target Station 1 PLCs at ISIS is discussed as a highlight of the migration. PB - JACoW Publishing CP - Geneva, Switzerland SP - 817 EP - 822 KW - EPICS KW - controls KW - network KW - operation KW - PLC DA - 2024/02 PY - 2024 SN - 2226-0358 SN - 978-3-95450-238-7 DO - doi:10.18429/JACoW-ICALEPCS2023-TUPDP108 UR - https://jacow.org/icalepcs2023/papers/tupdp108.pdf ER - TY - CONF AU - Baker, K.R.L. AU - Finch, I.D. AU - Romanovschi, M. ED - Schaa, Volker RW ED - Götz, Andy ED - Venter, Johan ED - White, Karen ED - Robichon, Marie ED - Rowland, Vivienne TI - Maintaining a Hybrid Control System at ISIS with a Vsystem/EPICS Bridge J2 - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023 CY - Cape Town, South Africa T2 - International Conference on Accelerator and Large Experimental Physics Control Systems T3 - 19 LA - english AB - The migration of the controls system for the ISIS accelerator from Vsystem to EPICS presents a significant challenge and risk to day-to-day operations. To minimise this impact throughout the transition, a software bridge between the two control systems has been developed that allows the phased porting of HMIs and hardware. The hybrid Vsystem and EPICS system also allows the continued use of existing feedback control applications that now require interaction between both control systems, for example the halo steering operation in Target Station 1. This work describes the implementation of this bridge, referred to as PVEcho, for the mapping of Vsystem channels to EPICS PVs and vice versa. The position within the wider ISIS controls software stack is outlined as well as how it utilises Python libraries for EPICS. Finally, we will discuss the software development practices applied that have allowed the bridge to run reliably for months at a time. PB - JACoW Publishing CP - Geneva, Switzerland SP - 986 EP - 992 KW - EPICS KW - controls KW - software KW - hardware KW - target DA - 2024/02 PY - 2024 SN - 2226-0358 SN - 978-3-95450-238-7 DO - doi:10.18429/JACoW-ICALEPCS2023-WE2BCO04 UR - https://jacow.org/icalepcs2023/papers/we2bco04.pdf ER - TY - CONF AU - Washington, R.A. ED - Schaa, Volker RW ED - Götz, Andy ED - Venter, Johan ED - White, Karen ED - Robichon, Marie ED - Rowland, Vivienne TI - Development of a New Timing System for ISIS J2 - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023 CY - Cape Town, South Africa T2 - International Conference on Accelerator and Large Experimental Physics Control Systems T3 - 19 LA - english AB - The timing system at the ISIS Neutron and Muon source has been operating in its current iteration since 2008. Machine timing is handled by the Central Timing Distributor (CTD) which transmits various timing signals to ISIS accelerator equipment over RS-422 compliant timing buses. The nature of these timing signals has not changed since ISIS first delivered neutrons in 1984, and this paper will look at how an event-based timing system can be employed in the next generation of timing system for ISIS. A new timing system should allow for the distribution of events, triggers and timestamps, provide an increase in timing resolution and be fully backwards compatible with the current timing frame. The new Digitised Waveform System (DWS) at ISIS supports White Rabbit (WR). There is an available WR network which can be used to investigate a new timing system based on WR technology. Conclusions will be drawn from installing this new system in parallel with the current timing system; a comparison between the systems, alternatives, and next steps will be discussed. PB - JACoW Publishing CP - Geneva, Switzerland SP - 1247 EP - 1249 KW - timing KW - hardware KW - target KW - controls KW - network DA - 2024/02 PY - 2024 SN - 2226-0358 SN - 978-3-95450-238-7 DO - doi:10.18429/JACoW-ICALEPCS2023-THMBCMO23 UR - https://jacow.org/icalepcs2023/papers/thmbcmo23.pdf ER -