TY - CONF AU - Yilmaz, U.Y. AU - Android, M.G.P.T. AU - de Beer, M.J.A. ED - Schaa, Volker RW ED - Götz, Andy ED - Venter, Johan ED - White, Karen ED - Robichon, Marie ED - Rowland, Vivienne TI - Driving Behavioural Change of Software Developers in a Global Organisation Assisted by a Paranoid Android J2 - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023 CY - Cape Town, South Africa T2 - International Conference on Accelerator and Large Experimental Physics Control Systems T3 - 19 LA - english AB - Ensuring code quality standards at the Square Kilometre Array Observatory (SKAO) is of utmost importance, as the project spans multiple nations and encompasses a wide range of software products delivered by developers from around the world. To improve code quality and meet certain open-source software prerequisites for a wider collaboration, the SKAO employs the use of a chatbot that provides witty, direct and qualified comments with detailed documentation that guide developers in improving their coding practices. The bot is modelled after a famous character albeit a depressed one, creating a relatable personality for developers. This has resulted in an increase in code quality and faster turnaround times. The bot has not only helped developers adhere to code standards but also fostered a culture of continuous improvement with an engaging and enjoyable process. Here we present the success story of the bot and how a chatbot can drive behavioural change within a global organisation and help DevOps teams to improve developer performance and agility through an innovative and engaging approach to code reviews. PB - JACoW Publishing CP - Geneva, Switzerland SP - 25 EP - 29 KW - software KW - GUI KW - feedback KW - MMI KW - operation DA - 2024/02 PY - 2024 SN - 2226-0358 SN - 978-3-95450-238-7 DO - doi:10.18429/JACoW-ICALEPCS2023-MO2BCO01 UR - https://jacow.org/icalepcs2023/papers/mo2bco01.pdf ER - TY - CONF AU - Brederode, L.R. AU - Coles, J. AU - Graser, F. AU - Kolatkar, J.A. AU - Ujjainkar, S. AU - Valame, S. ED - Schaa, Volker RW ED - Götz, Andy ED - Venter, Johan ED - White, Karen ED - Robichon, Marie ED - Rowland, Vivienne TI - Enabling Transformational Science Through Global Collaboration and Innovation Using the Scaled Agile Framework J2 - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023 CY - Cape Town, South Africa T2 - International Conference on Accelerator and Large Experimental Physics Control Systems T3 - 19 LA - english AB - The SKAO is one observatory, with two telescopes on three continents. It will be the world’s largest radio telescope once constructed, and will be able to observe the sky with unprecedented sensitivity and resolution. The SKAO software and computing systems will largely be responsible for orchestrating the observatory and associated telescopes, and processing the science data, before data products are distributed to regional science centres. The Scaled Agile Framework (SAFe) is being leveraged to coordinate over thirty lean agile development teams that are distributed throughout the world. In this paper, we report on our experience in using the Scaled Agile Framework, the successes we have enjoyed, as well as the impediments and challenges that have stood in our way. PB - JACoW Publishing CP - Geneva, Switzerland SP - 47 EP - 53 KW - framework KW - alignment KW - software KW - survey KW - feedback DA - 2024/02 PY - 2024 SN - 2226-0358 SN - 978-3-95450-238-7 DO - doi:10.18429/JACoW-ICALEPCS2023-MO2BCO05 UR - https://jacow.org/icalepcs2023/papers/mo2bco05.pdf ER - TY - CONF AU - Allan, V.L. AU - Brajnik, G. AU - Brederode, L.R. ED - Schaa, Volker RW ED - Götz, Andy ED - Venter, Johan ED - White, Karen ED - Robichon, Marie ED - Rowland, Vivienne TI - Using BDD Testing in SKAO: Challenges and Opportunities J2 - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023 CY - Cape Town, South Africa T2 - International Conference on Accelerator and Large Experimental Physics Control Systems T3 - 19 LA - english AB - Defining what a system should do is one of the hardest parts of system design. Using Behaviour Driven Design (BDD) techniques can help, and also help define the tests needed to check that the desired behaviour is implemented. We describe the challenges and opportunities that arise when adopting these techniques, including both technical and social issues, and especially why in our case BDD techniques provide significant value. We present our pathway towards using BDD and the lessons learned. By trying to use BDD testing to run integration tests, it enabled the identification of gaps in the testing infrastructure, particularly the TANGO testing infrastructure, and gaps in developers’ understanding of the system design. This allowed SKAO to take steps to improve the tests, the infrastructure, and the design, by integrating BDD techniques into the full product development lifecycle and using them also for monitoring the development process and the quality of software products. PB - JACoW Publishing CP - Geneva, Switzerland SP - 183 EP - 190 KW - software KW - TANGO KW - controls KW - distributed KW - interface DA - 2024/02 PY - 2024 SN - 2226-0358 SN - 978-3-95450-238-7 DO - doi:10.18429/JACoW-ICALEPCS2023-MO4BCO01 UR - https://jacow.org/icalepcs2023/papers/mo4bco01.pdf ER - TY - CONF AU - Zambrano, M.A. AU - Gonzalez, V. ED - Schaa, Volker RW ED - Götz, Andy ED - Venter, Johan ED - White, Karen ED - Robichon, Marie ED - Rowland, Vivienne TI - Database’s Disaster Recovery Meets a Ransomware Attack J2 - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023 CY - Cape Town, South Africa T2 - International Conference on Accelerator and Large Experimental Physics Control Systems T3 - 19 LA - english AB - Cyberattacks are a growing threat to organizations around the world, including observatories. These attacks can cause significant disruption to operations and can be costly to recover from. This paper provides an overview of the history of cyberattacks, the motivations of attackers, and the organization of cybercrime groups. It also discusses the steps that can be taken to quickly restore a key component of any organization, the database, and the lessons learned during the recovery process. The paper concludes by identifying some areas for improvement in cybersecurity, such as the need for better training for employees, more secure networks, and more robust data backup and recovery procedures. PB - JACoW Publishing CP - Geneva, Switzerland SP - 280 EP - 284 KW - database KW - network KW - target KW - software KW - GUI DA - 2024/02 PY - 2024 SN - 2226-0358 SN - 978-3-95450-238-7 DO - doi:10.18429/JACoW-ICALEPCS2023-TU2BCO01 UR - https://jacow.org/icalepcs2023/papers/tu2bco01.pdf ER - TY - CONF AU - Di Carlo, M. AU - Dolci, M. AU - Harding, P. AU - Morgado, J.B. AU - Osorio, P. AU - Yilmaz, U.Y. ED - Schaa, Volker RW ED - Götz, Andy ED - Venter, Johan ED - White, Karen ED - Robichon, Marie ED - Rowland, Vivienne TI - Monitoring the SKA Infrastructure for CICD J2 - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023 CY - Cape Town, South Africa T2 - International Conference on Accelerator and Large Experimental Physics Control Systems T3 - 19 LA - english AB - The Square Kilometre Array (SKA) is an international effort to build two radio interferometers in South Africa and Australia, forming one Observatory monitored and controlled from global headquarters (GHQ) based in the United Kingdom at Jodrell Bank. The selected solution for monitoring the SKA CICD (continuous integration and continuous deployment) Infrastructure is Prometheus with the help of Thanos. Thanos is used for high availability, resilience, and long term storage retention for monitoring data. For data visualisation, the Grafana project emerged as an important tool for displaying data in order to make specific reasoning and debugging of particular aspect of the infrastructure in place. In this paper, the monitoring platform is presented while considering quality aspect such as performance, scalability, and data preservation. PB - JACoW Publishing CP - Geneva, Switzerland SP - 622 EP - 626 KW - monitoring KW - target KW - database KW - TANGO KW - distributed DA - 2024/02 PY - 2024 SN - 2226-0358 SN - 978-3-95450-238-7 DO - doi:10.18429/JACoW-ICALEPCS2023-TUPDP045 UR - https://jacow.org/icalepcs2023/papers/tupdp045.pdf ER - TY - CONF AU - Juerges, T. AU - Abeillé, G. AU - Auger-Williams, R.J. AU - Bertrand, B. AU - Bourtembourg, R. AU - Braun, T. AU - Cuní, G. AU - Götz, A. AU - Hardion, V. AU - Joubert, A.F. AU - Lacoste, D. AU - Leclercq, N. AU - Matveev, Yu. AU - Nabywaniec, M. AU - Noga, T.R. AU - Pascual-Izarra, C. AU - Pivetta, L. AU - Rubio-Manrique, S. AU - Żytniak, Ł. ED - Schaa, Volker RW ED - Götz, Andy ED - Venter, Johan ED - White, Karen ED - Robichon, Marie ED - Rowland, Vivienne TI - The Tango Controls Collaboration Status in 2023 J2 - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023 CY - Cape Town, South Africa T2 - International Conference on Accelerator and Large Experimental Physics Control Systems T3 - 19 LA - english AB - Since 2021 the Tango Controls collaboration has improved and optimised its efforts in many areas. Not only have Special Interest Group meetings (SIGs) been introduced to speed up the adoption of new technologies or improvements, the kernel has switched to a fixed six-month release cycle for quicker adoption of stable kernel versions by the community. CI/CD provides now early feedback on test failures and compatibility issues. Major code refactoring allowed for a much more efficient use of developer resources. Relevant bug fixes, improvements and new features are now adopted at a much higher rate than ever before. The community participation has also noticeably improved. The kernel switched to C++14 and the logging system is undergoing a major refactoring. Among many new features and tools is jupyTango, Jupyter Notebooks on Tango Controls steroids. PyTango is now easy to install via binary wheels, old Python versions are no longer supported, the build-system is switching to CMake, and releases are now made much closer to stable cppTango releases. PB - JACoW Publishing CP - Geneva, Switzerland SP - 1100 EP - 1107 KW - TANGO KW - controls KW - Windows KW - device-server KW - software DA - 2024/02 PY - 2024 SN - 2226-0358 SN - 978-3-95450-238-7 DO - doi:10.18429/JACoW-ICALEPCS2023-TH1BCO03 UR - https://jacow.org/icalepcs2023/papers/th1bco03.pdf ER - TY - CONF AU - Ojur, B.A. AU - Devereux, D. AU - Twum, S.N. AU - Venter, A.J. AU - Vrcic, S. ED - Schaa, Volker RW ED - Götz, Andy ED - Venter, Johan ED - White, Karen ED - Robichon, Marie ED - Rowland, Vivienne TI - Asynchronous Execution of Tango Commands in the SKA Telescope Control System: An Alternative to the Tango Async Device J2 - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023 CY - Cape Town, South Africa T2 - International Conference on Accelerator and Large Experimental Physics Control Systems T3 - 19 LA - english AB - Equipment controlled by the Square Kilometre Array (SKA) Control System will have a TANGO interface for control and monitoring. Commands on TANGO device servers have a 3000 milliseconds window to complete their execution and return to the client. This timeout places a limitation on some commands used on SKA TANGO devices which take longer than the 3000 milliseconds window to complete; the threshold is more stricter in the SKA Control System (CS) Guidelines. Such a command, identified as a Long Running Command (LRC), needs to be executed asynchronously to circumvent the timeout. TANGO has support for an asynchronous device which allows commands to be executed slower than 3000 milliseconds by using a coroutine to put the task on an event loop. During the exploration of this, a decision was made to implement a custom approach in our base repository which all devices depend on. In this approach, every command annotated as ¿long running¿ is handed over to a thread to complete the task and its progress is tracked through attributes. These attributes report the queued commands along with their progress, status and results. The client is provided with a unique identifier which can be used to track the execution of the LRC and take further action based on the outcome of that command. LRCs can be aborted safely using a custom TANGO command. We present the reference design and implementation of the Long Running Commands for the SKA Controls System. PB - JACoW Publishing CP - Geneva, Switzerland SP - 1108 EP - 1114 KW - TANGO KW - controls KW - status KW - GUI KW - network DA - 2024/02 PY - 2024 SN - 2226-0358 SN - 978-3-95450-238-7 DO - doi:10.18429/JACoW-ICALEPCS2023-TH1BCO04 UR - https://jacow.org/icalepcs2023/papers/th1bco04.pdf ER - TY - CONF AU - Di Carlo, M. AU - Dolci, M. AU - Harding, P. AU - Morgado, J.B. AU - Osorio, P. AU - Yilmaz, U.Y. ED - Schaa, Volker RW ED - Götz, Andy ED - Venter, Johan ED - White, Karen ED - Robichon, Marie ED - Rowland, Vivienne TI - SKA Tango Operator J2 - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023 CY - Cape Town, South Africa T2 - International Conference on Accelerator and Large Experimental Physics Control Systems T3 - 19 LA - english AB - The Square Kilometre Array (SKA) is an international effort to build two radio interferometers in South Africa and Australia, forming one Observatory monitored and controlled from global headquarters (GHQ) based in the United Kingdom at Jodrell Bank. The software for the monitoring and control system is developed based on the TANGO-controls framework, which provide a distributed architecture for driving software and hardware using CORBA distributed objects that represent devices that communicate with ZeroMQ events internally. This system runs in a containerised environment managed by Kubernetes (k8s). k8s provides primitive resource types for the abstract management of compute, network and storage, as well as a comprehensive set of APIs for customising all aspects of cluster behaviour. These capabilities are encapsulated in a framework (Operator SDK) which enables the creation of higher order resources types assembled out of the k8s primitives (\verb|Pods|, \verb|Services|, \verb|PersistentVolumes|), so that abstract resources can be managed as first class citizens within k8s. These methods of resource assembly and management have proven useful for reconciling some of the differences between the TANGO world and that of Cloud Native computing, where the use of Custom Resource Definitions (CRD) (i.e., Device Server and DatabaseDS) and a supporting Operator developed in the k8s framework has given rise to better usage of TANGO-controls in k8s. PB - JACoW Publishing CP - Geneva, Switzerland SP - 1155 EP - 1159 KW - TANGO KW - controls KW - device-server KW - network KW - software DA - 2024/02 PY - 2024 SN - 2226-0358 SN - 978-3-95450-238-7 DO - doi:10.18429/JACoW-ICALEPCS2023-TH2AO06 UR - https://jacow.org/icalepcs2023/papers/th2ao06.pdf ER - TY - CONF AU - Lacoste, D. AU - Bourtembourg, R. AU - Forsberg, J. AU - Juerges, T. AU - Mol, J.J.D. AU - Pivetta, L. AU - Rubio-Manrique, S. AU - Scalamera, G. ED - Schaa, Volker RW ED - Götz, Andy ED - Venter, Johan ED - White, Karen ED - Robichon, Marie ED - Rowland, Vivienne TI - New Developements on HDB++, the High-performance Data Archiving for Tango Controls J2 - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023 CY - Cape Town, South Africa T2 - International Conference on Accelerator and Large Experimental Physics Control Systems T3 - 19 LA - english AB - The Tango HDB++ project is a high performance event-driven archiving system which stores data with micro-second resolution timestamps. HDB++ supports many different backends, including MySQL/MariaDB, TimeScaleDB (a time-series PostgreSQL extension), and soon SQLite. Building on its flexible design, latest developments made supporting new backends even easier. HDB++ keeps improving with new features such as batch insertion and by becoming easier to install or setup in a testing environment, using ready to use docker images and striving to simplify all the steps of deployment. The HDB++ project is not only a data storage installation, but a full ecosystem to manage data, query it, and get the information needed. In this effort a lot of tools were developed to put a powerful backend to its proper use and be able to get the best out of the stored data. In this paper we will present as well the latest developments in data extraction, from low level libraries to web viewer integration such as grafana. Pointing out strategies in use in terms of data decimation, compression and others to help deliver data as fast as possible. PB - JACoW Publishing CP - Geneva, Switzerland SP - 1190 EP - 1194 KW - TANGO KW - database KW - controls KW - interface KW - extraction DA - 2024/02 PY - 2024 SN - 2226-0358 SN - 978-3-95450-238-7 DO - doi:10.18429/JACoW-ICALEPCS2023-THMBCMO01 UR - https://jacow.org/icalepcs2023/papers/thmbcmo01.pdf ER - TY - CONF AU - Vrcic, S. AU - Juerges, T. ED - Schaa, Volker RW ED - Götz, Andy ED - Venter, Johan ED - White, Karen ED - Robichon, Marie ED - Rowland, Vivienne TI - Development of the SKA Control System, Progress, and Challenges J2 - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023 CY - Cape Town, South Africa T2 - International Conference on Accelerator and Large Experimental Physics Control Systems T3 - 19 LA - english AB - The SKA Project is a science mega-project whose mission is to build an astronomical observatory that comprises two large radio-telescopes: the SKA-Low Telescope, located in the Inyarrimanha Ilgari Bundara, the CSIRO Murchison Radio-astronomy Observatory in Western Australia, with the observing range 50 to 350 MHz, and the SKA Mid Telescope, located in the Karoo Region, South Africa, with the observing range 350 MHz to 15 GHz. The SKA Global Headquarters is in the Jodrell Bank Observatory, near Manchester, UK. When completed, the SKA Telescopes will surpass existing radio-astronomical facilities not only in the scientific criteria such as sensitivity, angular resolution, and survey speed, but also in the number of receptors and the range of the observing and processing modes. The Observatory, and each of the Telescopes, will be delivered in stages, thus supporting incremental development of the collecting area, signal and data processing capacity, and the observing and processing modes. Unlike scientific capability, which, in some cases, may be delivered in the late releases, the control system is required from the very beginning to support integration and verification. Development of the control system to support the first delivery of the Telescopes (Array Assembly 0.5) is well under way. This paper describes the SKA approach to the development of the Telescope Control System, and discusses opportunities and challenges resulting from the distributed development and staged approach to the Telescope construction. PB - JACoW Publishing CP - Geneva, Switzerland SP - 1221 EP - 1226 KW - controls KW - software KW - TANGO KW - interface KW - operation DA - 2024/02 PY - 2024 SN - 2226-0358 SN - 978-3-95450-238-7 DO - doi:10.18429/JACoW-ICALEPCS2023-THMBCMO14 UR - https://jacow.org/icalepcs2023/papers/thmbcmo14.pdf ER - TY - CONF AU - Arandjelovic, E.L. AU - Devereux, D. AU - Engelbrecht, J. AU - Pedersen, U.K. ED - Schaa, Volker RW ED - Götz, Andy ED - Venter, Johan ED - White, Karen ED - Robichon, Marie ED - Rowland, Vivienne TI - Tango Integration of the SKA-Low Power and Signal Distribution System J2 - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023 CY - Cape Town, South Africa T2 - International Conference on Accelerator and Large Experimental Physics Control Systems T3 - 19 LA - english AB - The Power and Signal Distribution System (PaSD) is a key component of the SKA-Low telescope, responsible for control and monitoring of local power to the electronic components of the RF signal chain for the antennas, and collecting the RF signals for transmission to the Central Processing Facility. The system comprises "SMART boxes" (SMART: Small Modular Aggregation and RFoF Trunk) which each connect directly to around 10 antennas to provide local monitoring and control, and one Field Node Distribution Hub (FNDH) per station which distributes power to all the SMART boxes and provides a communications gateway as well as additional local monitoring. All communication to the SMART boxes is funnelled through the FNDH on a multi-drop serial bus using the Modbus ASCII protocol. This paper will describe how the PaSD will be integrated into the Tango-based SKA-Low Monitoring Control and Calibration Subsystem (MCCS) software, including the facility for a drop-in Python simulator which can be used to test the software. PB - JACoW Publishing CP - Geneva, Switzerland SP - 1526 EP - 1528 KW - controls KW - TANGO KW - hardware KW - software KW - monitoring DA - 2024/02 PY - 2024 SN - 2226-0358 SN - 978-3-95450-238-7 DO - doi:10.18429/JACoW-ICALEPCS2023-THPDP077 UR - https://jacow.org/icalepcs2023/papers/thpdp077.pdf ER - TY - CONF AU - Clemens, A.J. AU - Devereux, D. AU - Magro, A. ED - Schaa, Volker RW ED - Götz, Andy ED - Venter, Johan ED - White, Karen ED - Robichon, Marie ED - Rowland, Vivienne TI - Integration of Bespoke Daq Software with Tango Controls in the SKAO Software Framework: From Problems to Progress J2 - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023 CY - Cape Town, South Africa T2 - International Conference on Accelerator and Large Experimental Physics Control Systems T3 - 19 LA - english AB - The Square Kilometre Array Observatory (SKAO) project is an international effort to build two radio interferometers in South Africa and Australia to form one Observatory monitored and controlled from the global headquarters in the United Kingdom at Jodrell Bank. The Monitoring, Control and Calibration System (MCCS) is the "front-end" management software for the Low telescope which provides monitoring and control capabilities as well as implementing calibration processes and providing complex diagnostics support. Once completed the Low telescope will boast over 130, 000 individual log-periodic antennas and so the scale of the data generated will be huge. It is estimated that an average of 8 terabits per second of data will be transferred from the SKAO telescopes in both countries to Central Processing Facilities (CPFs) located at the telescope sites. In order to keep pace with this magnitude of data production an equally impressive data acquisition (DAQ) system is required. This paper outlines the challenges encountered and solutions adopted whilst incorporating a bespoke DAQ library within the SKAO’s Kubernetes-Tango ecosystem in the MCCS subsystem in order to allow high speed data capture whilst maintaining a consistent deployment experience. PB - JACoW Publishing CP - Geneva, Switzerland SP - 1533 EP - 1535 KW - TANGO KW - controls KW - GPU KW - data-acquisition KW - software DA - 2024/02 PY - 2024 SN - 2226-0358 SN - 978-3-95450-238-7 DO - doi:10.18429/JACoW-ICALEPCS2023-THPDP079 UR - https://jacow.org/icalepcs2023/papers/thpdp079.pdf ER - TY - CONF AU - Juerges, T. AU - Dange, A. ED - Schaa, Volker RW ED - Götz, Andy ED - Venter, Johan ED - White, Karen ED - Robichon, Marie ED - Rowland, Vivienne TI - The SKAO Engineering Data Archive: From Basic Design to Prototype Deployments in Kubernetes J2 - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023 CY - Cape Town, South Africa T2 - International Conference on Accelerator and Large Experimental Physics Control Systems T3 - 19 LA - english AB - During its construction and production life cycles, the Square Kilometre Array Observatory (SKAO) will generate non-scientific, i.e. engineering, data. The sources of the engineering data are either hardware devices or software programs that generate this data. Thanks to the Tango Controls software framework, the engineering data can be automatically stored in a relational database, which SKAP refers to as the Engineering Data Archive (EDA). Making the data in the EDA accessible and available to engineers and users in the observatory is as important as storing the data itself. Possible use cases for the data are verification of systems under test, performance evaluation of systems under test, predictive maintenance and general performance monitoring over time. Therefore we tried to build on the knowledge that other research facilities in the Tango Controls collaboration already gained, when they designed, implemented, deployed and ran their engineering data archives. SKAO implemented a prototype for its EDA, that leverages several open-source software packages, with Tango Controls’ HDB++, the Timescaledb time series database and Kubernetes at its core. In this overview we will answer the immediate question "But why do we not just do, what others are doing?" and explain the reasoning behind our choices in the design and in the implementation. PB - JACoW Publishing CP - Geneva, Switzerland SP - 1590 EP - 1593 KW - software KW - controls KW - TANGO KW - database KW - extraction DA - 2024/02 PY - 2024 SN - 2226-0358 SN - 978-3-95450-238-7 DO - doi:10.18429/JACoW-ICALEPCS2023-THSDSC05 UR - https://jacow.org/icalepcs2023/papers/thsdsc05.pdf ER - TY - CONF AU - Rees, N.P. ED - Schaa, Volker RW ED - Götz, Andy ED - Venter, Johan ED - White, Karen ED - Robichon, Marie ED - Rowland, Vivienne TI - SKA Project Status Update J2 - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023 CY - Cape Town, South Africa T2 - International Conference on Accelerator and Large Experimental Physics Control Systems T3 - 19 LA - english AB - The SKA Project is a science mega-project whose mission is to build the world’s two largest radio telescopes with sensitivity, angular resolution, and survey speed far surpassing current state-of-the-art instruments at relevant radio frequencies. The Low Frequency telescope, SKA-Low, is designed to observe between 50 and 350 MHz and will be built at Inyarrimanha Ilgari Bundara, the CSIRO Murchison Radio-astronomy Observatory in Western Australia. The Mid Frequency telescope, SKA-Mid, is designed to observe between 350 MHz and 15 GHz and will be built in the Meerkat National Park, in the Northern Cape of South Africa. Each telescope will be delivered in a number of stages, called Array Assemblies. Each Array Assembly will be a fully working telescope which will allow us to understand the design and potentially improve the system to deliver a better scientific instrument for the users. The final control system will consist of around 2 million control points per telescope, and the first Array Assembly, known as AA0.5, is being delivered at the time of ICALEPCS 2023. PB - JACoW Publishing CP - Geneva, Switzerland SP - 1610 EP - 1615 KW - software KW - site KW - MMI KW - status KW - controls DA - 2024/02 PY - 2024 SN - 2226-0358 SN - 978-3-95450-238-7 DO - doi:10.18429/JACoW-ICALEPCS2023-FR1BCO03 UR - https://jacow.org/icalepcs2023/papers/fr1bco03.pdf ER -