TY - CONF AU - Auger-Williams, R.J. AU - Alexander, A.L. AU - Cobb, T.M. AU - Gaughran, M.J. AU - Rose, A.J. AU - Wells, A.W.R. AU - Wilson, A.A. ED - Schaa, Volker RW ED - Götz, Andy ED - Venter, Johan ED - White, Karen ED - Robichon, Marie ED - Rowland, Vivienne TI - Lessons from Using Python GraphQL Libraries to Develop an EPICS PV Server for Web UIs J2 - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023 CY - Cape Town, South Africa T2 - International Conference on Accelerator and Large Experimental Physics Control Systems T3 - 19 LA - english AB - Diamond Light Source is currently developing a web-based EPICS control system User Interface (UI). This will replace the use of EDM and the Eclipse-based CS-Studio at Diamond, and it will integrate with future Acquisition and Analysis software. For interoperability, it will use the Phoebus BOB file format. The architecture consists of a back-end application using EPICS Python libraries to obtain PV data and the query language GraphQL to serve these data to a React-based front end. A prototype was made in 2021, and we are now doing further development from the prototype to meet the first use cases. Our current work focuses on the back-end application, Coniql, and for the query interface we have selected the Strawberry GraphQL implementation from the many GraphQL libraries available. We discuss the reasons for this decision, highlight the issues that arose with GraphQL, and outline our solutions. We also demonstrate how well these libraries perform within the context of the EPICS web UI requirements using a set of performance metrics. Finally, we provide a summary of our development plans. PB - JACoW Publishing CP - Geneva, Switzerland SP - 191 EP - 195 KW - EPICS KW - controls KW - status KW - ECR KW - factory DA - 2024/02 PY - 2024 SN - 2226-0358 SN - 978-3-95450-238-7 DO - doi:10.18429/JACoW-ICALEPCS2023-MO4BCO02 UR - https://jacow.org/icalepcs2023/papers/mo4bco02.pdf ER - TY - CONF AU - Smith, P.T. AU - Greer, A. AU - McCubbin, D.J.N. AU - Roberts, B.A. AU - Roberts, M. AU - Taylor, P.B. ED - Schaa, Volker RW ED - Götz, Andy ED - Venter, Johan ED - White, Karen ED - Robichon, Marie ED - Rowland, Vivienne TI - Control System Design of the CHIMERA Fusion Test Facility J2 - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023 CY - Cape Town, South Africa T2 - International Conference on Accelerator and Large Experimental Physics Control Systems T3 - 19 LA - english AB - CHIMERA is an experimental nuclear fusion test facility which aims to simulate the intense magnetic fields and temperature gradients found within a tokamak fusion reactor. The control system at CHIMERA is based on EPICS and will have approximately 30 input/output controllers (IOCs) when it comes online in 2024. It will make heavy use of CSS Phoebus for its user interface, sequencer and alarm system. CHIMERA will use EPICS Archiver Appliance for data archiving and EPICS areaDetector to acquire high speed data which is stored in the HDF5 format. The control philosophy at CHIMERA emphasises PLC based control logic using mostly Siemens S7-1500 PLCs and using OPCUA to communicate with EPICS. EPICS AUTOSAVE is used both for manually setting lists of process variables (PVs) and for automatic restoration of PVs if an IOC must be restarted. PB - JACoW Publishing CP - Geneva, Switzerland SP - 827 EP - 831 KW - controls KW - EPICS KW - experiment KW - PLC KW - SCADA DA - 2024/02 PY - 2024 SN - 2226-0358 SN - 978-3-95450-238-7 DO - doi:10.18429/JACoW-ICALEPCS2023-TUPDP110 UR - https://jacow.org/icalepcs2023/papers/tupdp110.pdf ER - TY - CONF AU - Juerges, T. AU - Abeillé, G. AU - Auger-Williams, R.J. AU - Bertrand, B. AU - Bourtembourg, R. AU - Braun, T. AU - Cuní, G. AU - Götz, A. AU - Hardion, V. AU - Joubert, A.F. AU - Lacoste, D. AU - Leclercq, N. AU - Matveev, Yu. AU - Nabywaniec, M. AU - Noga, T.R. AU - Pascual-Izarra, C. AU - Pivetta, L. AU - Rubio-Manrique, S. AU - Żytniak, Ł. ED - Schaa, Volker RW ED - Götz, Andy ED - Venter, Johan ED - White, Karen ED - Robichon, Marie ED - Rowland, Vivienne TI - The Tango Controls Collaboration Status in 2023 J2 - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023 CY - Cape Town, South Africa T2 - International Conference on Accelerator and Large Experimental Physics Control Systems T3 - 19 LA - english AB - Since 2021 the Tango Controls collaboration has improved and optimised its efforts in many areas. Not only have Special Interest Group meetings (SIGs) been introduced to speed up the adoption of new technologies or improvements, the kernel has switched to a fixed six-month release cycle for quicker adoption of stable kernel versions by the community. CI/CD provides now early feedback on test failures and compatibility issues. Major code refactoring allowed for a much more efficient use of developer resources. Relevant bug fixes, improvements and new features are now adopted at a much higher rate than ever before. The community participation has also noticeably improved. The kernel switched to C++14 and the logging system is undergoing a major refactoring. Among many new features and tools is jupyTango, Jupyter Notebooks on Tango Controls steroids. PyTango is now easy to install via binary wheels, old Python versions are no longer supported, the build-system is switching to CMake, and releases are now made much closer to stable cppTango releases. PB - JACoW Publishing CP - Geneva, Switzerland SP - 1100 EP - 1107 KW - TANGO KW - controls KW - Windows KW - device-server KW - software DA - 2024/02 PY - 2024 SN - 2226-0358 SN - 978-3-95450-238-7 DO - doi:10.18429/JACoW-ICALEPCS2023-TH1BCO03 UR - https://jacow.org/icalepcs2023/papers/th1bco03.pdf ER - TY - CONF AU - Arandjelovic, E.L. AU - Devereux, D. AU - Engelbrecht, J. AU - Pedersen, U.K. ED - Schaa, Volker RW ED - Götz, Andy ED - Venter, Johan ED - White, Karen ED - Robichon, Marie ED - Rowland, Vivienne TI - Tango Integration of the SKA-Low Power and Signal Distribution System J2 - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023 CY - Cape Town, South Africa T2 - International Conference on Accelerator and Large Experimental Physics Control Systems T3 - 19 LA - english AB - The Power and Signal Distribution System (PaSD) is a key component of the SKA-Low telescope, responsible for control and monitoring of local power to the electronic components of the RF signal chain for the antennas, and collecting the RF signals for transmission to the Central Processing Facility. The system comprises "SMART boxes" (SMART: Small Modular Aggregation and RFoF Trunk) which each connect directly to around 10 antennas to provide local monitoring and control, and one Field Node Distribution Hub (FNDH) per station which distributes power to all the SMART boxes and provides a communications gateway as well as additional local monitoring. All communication to the SMART boxes is funnelled through the FNDH on a multi-drop serial bus using the Modbus ASCII protocol. This paper will describe how the PaSD will be integrated into the Tango-based SKA-Low Monitoring Control and Calibration Subsystem (MCCS) software, including the facility for a drop-in Python simulator which can be used to test the software. PB - JACoW Publishing CP - Geneva, Switzerland SP - 1526 EP - 1528 KW - controls KW - TANGO KW - hardware KW - software KW - monitoring DA - 2024/02 PY - 2024 SN - 2226-0358 SN - 978-3-95450-238-7 DO - doi:10.18429/JACoW-ICALEPCS2023-THPDP077 UR - https://jacow.org/icalepcs2023/papers/thpdp077.pdf ER - TY - CONF AU - Clemens, A.J. AU - Devereux, D. AU - Magro, A. ED - Schaa, Volker RW ED - Götz, Andy ED - Venter, Johan ED - White, Karen ED - Robichon, Marie ED - Rowland, Vivienne TI - Integration of Bespoke Daq Software with Tango Controls in the SKAO Software Framework: From Problems to Progress J2 - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023 CY - Cape Town, South Africa T2 - International Conference on Accelerator and Large Experimental Physics Control Systems T3 - 19 LA - english AB - The Square Kilometre Array Observatory (SKAO) project is an international effort to build two radio interferometers in South Africa and Australia to form one Observatory monitored and controlled from the global headquarters in the United Kingdom at Jodrell Bank. The Monitoring, Control and Calibration System (MCCS) is the "front-end" management software for the Low telescope which provides monitoring and control capabilities as well as implementing calibration processes and providing complex diagnostics support. Once completed the Low telescope will boast over 130, 000 individual log-periodic antennas and so the scale of the data generated will be huge. It is estimated that an average of 8 terabits per second of data will be transferred from the SKAO telescopes in both countries to Central Processing Facilities (CPFs) located at the telescope sites. In order to keep pace with this magnitude of data production an equally impressive data acquisition (DAQ) system is required. This paper outlines the challenges encountered and solutions adopted whilst incorporating a bespoke DAQ library within the SKAO’s Kubernetes-Tango ecosystem in the MCCS subsystem in order to allow high speed data capture whilst maintaining a consistent deployment experience. PB - JACoW Publishing CP - Geneva, Switzerland SP - 1533 EP - 1535 KW - TANGO KW - controls KW - GPU KW - data-acquisition KW - software DA - 2024/02 PY - 2024 SN - 2226-0358 SN - 978-3-95450-238-7 DO - doi:10.18429/JACoW-ICALEPCS2023-THPDP079 UR - https://jacow.org/icalepcs2023/papers/thpdp079.pdf ER -