TY - CONF AU - Jamilkowski, J.P. AU - Clark, S.L. AU - Costanzo, M.R. AU - D’Ottavio, T. AU - Dalesio, L.R. AU - Harvey, M. AU - Kulmatycski, K. AU - Mernick, K. AU - Montag, C. AU - Nemesure, S. AU - Ranjbar, V.H. AU - Severino, F. AU - Shroff, K. AU - Smith, K.S. ED - Schaa, Volker RW ED - Götz, Andy ED - Venter, Johan ED - White, Karen ED - Robichon, Marie ED - Rowland, Vivienne TI - EIC Controls System Architecture Status and Plans J2 - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023 CY - Cape Town, South Africa T2 - International Conference on Accelerator and Large Experimental Physics Control Systems T3 - 19 LA - english AB - Preparations are underway to build the Electron Ion Collider (EIC) once Relativistic Heavy Ion Collider (RHIC) beam operations are end in 2025, providing an enhanced probe into the building blocks of nuclear physics for decades into the future. With commissioning of the new facility in mind, Accelerator Controls will require modernization in order to keep up with recent improvements in the field as well as to match the fundamental requirements of the accelerators that will be constructed. We will describe the status of the Controls System architecture that has been developed and prototyped for EIC, as well as plans for future work. Major influences on the requirements will be discussed, including EIC Common Platform applications as well as our expectation that we’ll need to support a hybrid environment covering both the proprietary RHIC Accelerator Device Object (ADO) environment as well as EPICS. PB - JACoW Publishing CP - Geneva, Switzerland SP - 19 EP - 24 KW - controls KW - EPICS KW - software KW - interface KW - operation DA - 2024/02 PY - 2024 SN - 2226-0358 SN - 978-3-95450-238-7 DO - doi:10.18429/JACoW-ICALEPCS2023-MO1BCO04 UR - https://jacow.org/icalepcs2023/papers/mo1bco04.pdf ER - TY - CONF AU - Müller, R. AU - Allan, D.B. AU - Görzig, H. AU - Hartmann, G. AU - Kiefer, K. AU - Ovsyannikov, R. AU - Smith, W. AU - Vadilonga, S. AU - Viefhaus, J. ED - Schaa, Volker RW ED - Götz, Andy ED - Venter, Johan ED - White, Karen ED - Robichon, Marie ED - Rowland, Vivienne TI - Experimental Data Taking and Management: The Upgrade Process at BESSY II and HZB J2 - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023 CY - Cape Town, South Africa T2 - International Conference on Accelerator and Large Experimental Physics Control Systems T3 - 19 LA - english AB - The endeavor of modernizing science data acquisition at BESSY II started 2019 Significant achievements have been made: the Bluesky software ecosystem is now accepted framework for data acquisition, flow control and automation. It is operational at an increasing number of HZB beamlines, endstations and instruments. Participation in the global Bluesky collaboration is an extremely empowering experience. Promoting FAIR data principles at all levels developed a unifying momentum, providing guidance at less obvious design considerations. Now a joint demonstrator project of DESY, HZB, HZDR and KIT, named ROCK-IT (Remote Operando Controlled Knowledge-driven, IT-based), aims at portable solutions for fully automated measurements in the catalysis area of material science and is spearheading common developments. Foundation there is laid by Bluesky data acquisition, AI/ML support and analysis, modular sample environment, robotics and FAIR data handling. This paper puts present HZB controls projects as well as detailed HZB contributions to this conference into context. It outlines strategies providing appropriate digital tools at a successor 4th generation light source BESSY III. PB - JACoW Publishing CP - Geneva, Switzerland SP - 84 EP - 89 KW - experiment KW - controls KW - EPICS KW - data-acquisition KW - MMI DA - 2024/02 PY - 2024 SN - 2226-0358 SN - 978-3-95450-238-7 DO - doi:10.18429/JACoW-ICALEPCS2023-MO2AO04 UR - https://jacow.org/icalepcs2023/papers/mo2ao04.pdf ER - TY - CONF AU - Gofron, K.J. AU - Chong, S.C. AU - Fumiaki, F. AU - Giles, SG. AU - Guyotte, G.S. AU - Lyons, SDL. AU - Vacaliuc, B. AU - Wlodek, J. ED - Schaa, Volker RW ED - Götz, Andy ED - Venter, Johan ED - White, Karen ED - Robichon, Marie ED - Rowland, Vivienne TI - Deployment of ADTimePix3 areaDetector Driver at Neutron and X-ray User Facilities J2 - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023 CY - Cape Town, South Africa T2 - International Conference on Accelerator and Large Experimental Physics Control Systems T3 - 19 LA - english AB - TimePix3 is a 65k hybrid pixel readout chip with simultaneous Time-of-Arrival (ToA) and Time-over-Threshold (ToT) recording in each pixel. The chip operates without a trigger signal with a sparse readout where only pixels containing events are read out. The flexible architecture allows 40 MHits/s/cm² readout throughput, using simultaneous readout and acquisition by sharing readout logic with transport logic of superpixel matrix formed using 2x4 structure. The chip ToA records 1.5625 ns time resolution. The X-ray and charged particle events are counted directly. However, indirect neutron counts use 6Li fission in a scintillator matrix, such as ZnS(Ag). The fission space-charge region is limited to 5-9 um. A photon from scintillator material excites a photocathode electron, which is further multiplied in dual-stack MCP. The neutron count event is a cluster of electron events at the chip. We report on the EPICS areaDetector ADTimePix3 driver that controls Serval using json commands. The driver directs data to storage and to a real-time processing pipeline and configures the chip. The time-stamped data are stored in raw.tpx3 file format and passed through a socket where the clustering software identifies individual neutron events. The conventional 2D images are available as images for each exposure frame, and a preview is useful for sample alignment. The areaDetector driver allows integration of time-enhanced capabilities of this detector into SNS beamlines controls and unprecedented time resolution. PB - JACoW Publishing CP - Geneva, Switzerland SP - 90 EP - 94 KW - detector KW - neutron KW - controls KW - EPICS KW - software DA - 2024/02 PY - 2024 SN - 2226-0358 SN - 978-3-95450-238-7 DO - doi:10.18429/JACoW-ICALEPCS2023-MO2AO05 UR - https://jacow.org/icalepcs2023/papers/mo2ao05.pdf ER - TY - CONF AU - Einstein-Curtis, J.A. AU - Abell, D.T. AU - Du, Y. AU - Giles, A. AU - Keilman, M.V. AU - Lynch, J. AU - Moeller, P. AU - Morris, T. AU - Nash, B. AU - Pogorelov, I.V. AU - Rakitin, M. AU - Walter, A.L. ED - Schaa, Volker RW ED - Götz, Andy ED - Venter, Johan ED - White, Karen ED - Robichon, Marie ED - Rowland, Vivienne TI - Online Models for X-ray Beamlines Using Sirepo-Bluesky J2 - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023 CY - Cape Town, South Africa T2 - International Conference on Accelerator and Large Experimental Physics Control Systems T3 - 19 LA - english AB - Synchrotron radiation beamlines transport X-rays from the electron beam source to the experimental sample. Precise alignment of the beamline optics is required to achieve adequate beam properties at the sample. This process is often done manually and can be quite time consuming. Further, we would like to know the properties at the sample in order to provide metadata for X-ray experiments. Diagnostics may provide some of this information but important properties may remain unmeasured. In order to solve both of these problems, we are developing tools to create fast online models (also known as digital twins). For this purpose, we are creating reduced models that fit into a hierarchy of X-ray models of varying degrees of complexity and runtime. These are implemented within a software framework called Sirepo-Bluesky that allows for the computation of the model from within a Bluesky session which may control a real beamline. This work is done in collaboration with NSLS-II. We present the status of the software development and beamline measurements including results from the TES beamline. Finally, we present an outlook for continuing this work and applying it to more beamlines at NSLS-II and other synchrotron facilities around the world. PB - JACoW Publishing CP - Geneva, Switzerland SP - 165 EP - 170 KW - synchrotron KW - optics KW - radiation KW - electron KW - controls DA - 2024/02 PY - 2024 SN - 2226-0358 SN - 978-3-95450-238-7 DO - doi:10.18429/JACoW-ICALEPCS2023-MO3BCO05 UR - https://jacow.org/icalepcs2023/papers/mo3bco05.pdf ER - TY - CONF AU - Bachek, P. AU - Hayes, T. AU - Mead, J. AU - Mernick, K. AU - Narayan, G. AU - Severino, F. ED - Schaa, Volker RW ED - Götz, Andy ED - Venter, Johan ED - White, Karen ED - Robichon, Marie ED - Rowland, Vivienne TI - Development of a Timing and Data Link for EIC Common Hardware Platform J2 - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023 CY - Cape Town, South Africa T2 - International Conference on Accelerator and Large Experimental Physics Control Systems T3 - 19 LA - english AB - Modern timing distribution systems benefit from high configurability and the bidirectional transfer of timing data. The Electron Ion Collider (EIC) Common Hardware Platform (CHP) will integrate the functions of the existing RHIC Real Time Data Link (RTDL), Event Link, and Beam Sync Link, along with the Low-Level RF (LLRF) system Update Link (UL), into a common high speed serial link. One EIC CHP carrier board sup-ports up to eight external 8 Gbps high speed links via SFP+ modules, as well as up to six 8 Gbps high speed links to each of two daughterboards. A daughterboard will be designed for the purpose of timing data link distribution for use with the CHP. This daughterboard will have two high speed digital crosspoint switches and a Xilinx Artix Ultrascale⁺ FPGA onboard with GTY transceivers. One of these will be dedicated for a high-speed control and data link directly between the onboard FPGA and the carrier FPGA. The remaining GTY transceivers will be routed through the crosspoint switches. The daughterboard will support sixteen external SFP+ ports for timing distribution infrastructure with some ports dedicated for transmit only link fanout. The timing data link will support bidirectional data transfer including sending data or events from a downstream device back upstream. This flexibility will be achieved by routing the SFP+ ports through the crosspoint switches which allows the timing link datapaths to be forwarded directly through the daughterboard to the carrier and into the FPGA on the daughterboard in many different configurations. PB - JACoW Publishing CP - Geneva, Switzerland SP - 228 EP - 232 KW - network KW - timing KW - FPGA KW - alignment KW - site DA - 2024/02 PY - 2024 SN - 2226-0358 SN - 978-3-95450-238-7 DO - doi:10.18429/JACoW-ICALEPCS2023-MO4AO05 UR - https://jacow.org/icalepcs2023/papers/mo4ao05.pdf ER - TY - CONF AU - Maldonado, J. AU - Clark, S.L. AU - Fu, W. AU - Nemesure, S. ED - Schaa, Volker RW ED - Götz, Andy ED - Venter, Johan ED - White, Karen ED - Robichon, Marie ED - Rowland, Vivienne TI - Enhancing Electronic Logbooks Using Machine Learning J2 - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023 CY - Cape Town, South Africa T2 - International Conference on Accelerator and Large Experimental Physics Control Systems T3 - 19 LA - english AB - The electronic logbook (elog) system used at Brookhaven National Laboratory’s Collider-Accelerator Department (C-AD) allows users to customize logbook settings, including specification of favorite logbooks. Using machine learning techniques, customizations can be further personalized to provide users with a view of entries that match their specific interests. We will utilize natural language processing (NLP), optical character recognition (OCR), and topic models to augment the elog system. NLP techniques will be used to process and classify text entries. To analyze entries including images with text, such as screenshots of controls system applications, we will apply OCR. Topic models will generate entry recommendations that will be compared to previously tested language processing models. We will develop a command line interface tool to ease automation of NLP tasks in the controls system and create a web interface to test entry recommendations. This technique will create recommendations for each user, providing custom sets of entries and possibly eliminate the need for manual searching. PB - JACoW Publishing CP - Geneva, Switzerland SP - 382 EP - 385 KW - controls KW - interface KW - electron KW - database KW - power-supply DA - 2024/02 PY - 2024 SN - 2226-0358 SN - 978-3-95450-238-7 DO - doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO15 UR - https://jacow.org/icalepcs2023/papers/tumbcmo15.pdf ER - TY - CONF AU - Einstein-Curtis, J.A. AU - Drees, K.A. AU - Edelen, J.P. AU - Kilpatrick, M.C. AU - Laster, J.S. AU - O’Rourke, R. AU - Valette, M. ED - Schaa, Volker RW ED - Götz, Andy ED - Venter, Johan ED - White, Karen ED - Robichon, Marie ED - Rowland, Vivienne TI - Classification and Prediction of Superconducting Magnet Quenches J2 - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023 CY - Cape Town, South Africa T2 - International Conference on Accelerator and Large Experimental Physics Control Systems T3 - 19 LA - english AB - Robust and reliable quench detection for superconducting magnets is increasingly important as facilities push the boundaries of intensity and operational runtime. RadiaSoft has been working with Brookhaven National Lab on quench detection and prediction for superconducting magnets installed in the RHIC storage rings. This project has analyzed several years of power supply and beam position monitor data to train automated classification tools and automated quench precursor determination based on input sequences. Classification was performed using supervised multilayer perceptron and boosted decision tree architectures, while models of the expected operation of the ring were developed using a variety of autoencoder architectures. We have continued efforts to maximize area under the receiver operating characteristic curve for the multiple classification problem of real quench, fake quench, and no-quench events. We have also begun work on long short-term memory (LSTM) and other recurrent architectures for quench prediction. Examinations of future work utilizing more robust architectures, such as variational autoencoders and Siamese models, as well as methods necessary for uncertainty quantification will be discussed. PB - JACoW Publishing CP - Geneva, Switzerland SP - 856 EP - 859 KW - power-supply KW - superconducting-magnet KW - GUI KW - operation KW - experiment DA - 2024/02 PY - 2024 SN - 2226-0358 SN - 978-3-95450-238-7 DO - doi:10.18429/JACoW-ICALEPCS2023-TUPDP117 UR - https://jacow.org/icalepcs2023/papers/tupdp117.pdf ER - TY - CONF AU - Gofron, K.J. AU - Cai, Y.Q. AU - Coburn, D.S. AU - Suvorov, A. ED - Schaa, Volker RW ED - Götz, Andy ED - Venter, Johan ED - White, Karen ED - Robichon, Marie ED - Rowland, Vivienne TI - Temperature Control of Crystal Optics for Ultrahigh-Resolution Applications J2 - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023 CY - Cape Town, South Africa T2 - International Conference on Accelerator and Large Experimental Physics Control Systems T3 - 19 LA - english AB - The temperature control of crystal optics is critical for ultrahigh resolution applications such as those used in meV-resolved Inelastic Scattering. Due to the low count rate and long acquisition time of these experiments, for 1-meV energy resolution, the absolute temperature stability of the crystal optics must be maintained below 4 mK to ensure the required stability of lattice constant, thereby ensuring the energy stability of the optics. Furthermore, the temperature control with sub-mK precision enables setting the absolute temperature of individual crystal, making it possible to align the reflection energy of each crystal’s rocking curve in sub-meV resolution thereby maximizing the combined efficiency of the crystal optics. In this contribution, we report the details of an EPICS control system using PT1000 sensors, Keithley 3706A 7.5 digits sensor scanner, and Wiener MPOD LV power supply for the analyzer crystals of the Inelastic X-ray Scattering (IXS) beamline 10-ID at NSLS-II. We were able to achieve absolute temperature stability below 1 mK and sub-meV energy alignment for several asymmetrically cut analyzer crystals. The EPICS ePID record was used for the control of the power supplies based on the PT1000 sensor input that was read with 7.5 digits accuracy from the Keithley 3706A scanner. The system enhances the performance of the meV-resolved IXS spectrometer with currently a 1.4 meV total energy resolution and unprecedented spectral sharpness for studies of atomic dynamics in a broad range of materials. PB - JACoW Publishing CP - Geneva, Switzerland SP - 899 EP - 902 KW - controls KW - EPICS KW - optics KW - power-supply KW - lattice DA - 2024/02 PY - 2024 SN - 2226-0358 SN - 978-3-95450-238-7 DO - doi:10.18429/JACoW-ICALEPCS2023-TUPDP132 UR - https://jacow.org/icalepcs2023/papers/tupdp132.pdf ER - TY - CONF AU - Gao, Y. AU - Brown, K.A. AU - Michnoff, R.J. AU - Nguyen, L.K. AU - Tran, A.D. AU - Zarcone, A.Z. AU - van Kuik, B. ED - Schaa, Volker RW ED - Götz, Andy ED - Venter, Johan ED - White, Karen ED - Robichon, Marie ED - Rowland, Vivienne TI - Exploratory Data Analysis on the RHIC Cryogenics System Compressor Dataset J2 - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023 CY - Cape Town, South Africa T2 - International Conference on Accelerator and Large Experimental Physics Control Systems T3 - 19 LA - english AB - The Relativistic Heavy Ion Collider (RHIC) Cryogenic Refrigerator System is the cryogenic heart that allows RHIC superconducting magnets to operate. Parts of the refrigerator are two stages of compression composed of ten first and five second-stage compressors. Compressors are critical for operations. When a compressor faults, it can impact RHIC beam operations if a spare compressor is not brought online as soon as possible. The potential of applying machine learning to detect compressor problems before a fault occurs would greatly enhance Cryo operations, allowing an operator to switch to a spare compressor before a running compressor fails, minimizing impacts on RHIC operations. In this work, various data analysis results on historical compressor data are presented. It demonstrates an autoencoder-based method, which can catch early signs of compressor trips so that advance notices can be sent for the operators to take action. PB - JACoW Publishing CP - Geneva, Switzerland SP - 907 EP - 912 KW - cryogenics KW - operation KW - network KW - data-analysis KW - controls DA - 2024/02 PY - 2024 SN - 2226-0358 SN - 978-3-95450-238-7 DO - doi:10.18429/JACoW-ICALEPCS2023-TUPDP138 UR - https://jacow.org/icalepcs2023/papers/tupdp138.pdf ER - TY - CONF AU - Nguyen, L.K. ED - Schaa, Volker RW ED - Götz, Andy ED - Venter, Johan ED - White, Karen ED - Robichon, Marie ED - Rowland, Vivienne TI - The Pointing Stabilization Algorithm for the Coherent Electron Cooling Laser Transport at RHIC J2 - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023 CY - Cape Town, South Africa T2 - International Conference on Accelerator and Large Experimental Physics Control Systems T3 - 19 LA - english AB - Coherent electron cooling (CeC) is a novel cooling technique being studied in the Relativistic Heavy Ion Collider (RHIC) as a candidate for strong hadron cooling in the Electron-Ion Collider (EIC). The electron beam used for cooling is generated by laser light illuminating a photocathode after that light has traveled approximately 40 m from the laser output. This propagation is facilitated by three independent optical tables that move relative to one another in response to changes in time of day, weather, and season. The alignment drifts induced by these environmental changes, if left uncorrected, eventually render the electron beam useless for cooling. They are therefore mitigated by an active "slow" pointing stabilization system found along the length of the transport, copied from the system that transversely stabilized the Low Energy RHIC electron Cooling (LEReC) laser beam during the 2020 and 2021 RHIC runs. However, the system-specific optical configuration and laser operating conditions of the CeC experiment required an adapted algorithm to address inadequate beam position data and achieve greater dynamic range. The resulting algorithm was successfully demonstrated during the 2022 run of the CeC experiment and will continue to stabilize the laser transport for the upcoming run. A summary of the algorithm is provided. PB - JACoW Publishing CP - Geneva, Switzerland SP - 913 EP - 916 KW - laser KW - operation KW - gun KW - electron KW - controls DA - 2024/02 PY - 2024 SN - 2226-0358 SN - 978-3-95450-238-7 DO - doi:10.18429/JACoW-ICALEPCS2023-TUPDP139 UR - https://jacow.org/icalepcs2023/papers/tupdp139.pdf ER - TY - CONF AU - Cook, N.M. AU - Barbour, A.M. AU - Carlin, E.G. AU - Einstein-Curtis, J.A. AU - Nagler, R. AU - O’Rourke, R. AU - Rakitin, M. AU - Wiegart, L. AU - Wijesinghe, H. ED - Schaa, Volker RW ED - Götz, Andy ED - Venter, Johan ED - White, Karen ED - Robichon, Marie ED - Rowland, Vivienne TI - Integrating Online Analysis with Experiments to Improve X-Ray Light Source Operations J2 - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023 CY - Cape Town, South Africa T2 - International Conference on Accelerator and Large Experimental Physics Control Systems T3 - 19 LA - english AB - The design, execution, and analysis of light source experiments requires the use of sophisticated simulation, controls and data management tools. Existing workflows require significant specialization to accommodate specific beamline operations and data pre-processing steps necessary for more intensive analysis. Recent efforts to address these needs at the National Synchrotron Light Source II (NSLS-II) have resulted in the creation of the Bluesky data collection framework, an open-source library for coordinating experimental control and data collection. Bluesky provides high level abstraction of experimental procedures and instrument readouts to encapsulate generic workflows. We present a prototype data analysis platform for integrating data collection with real time analysis at the beamline. Our application leverages Bluesky in combination with a flexible run engine to execute user configurable Python-based analyses with customizable queueing and resource management. We discuss initial demonstrations to support X-ray photon correlation spectroscopy experiments and future efforts to expand the platform’s features. PB - JACoW Publishing CP - Geneva, Switzerland SP - 921 EP - 924 KW - experiment KW - interface KW - real-time KW - simulation KW - framework DA - 2024/02 PY - 2024 SN - 2226-0358 SN - 978-3-95450-238-7 DO - doi:10.18429/JACoW-ICALEPCS2023-TUSDSC02 UR - https://jacow.org/icalepcs2023/papers/tusdsc02.pdf ER - TY - CONF AU - Shroff, K. AU - Ashwarya, T. AU - Ford, T.M. AU - Kasemir, K.-U. AU - Lange, R. AU - Weiss, G. ED - Schaa, Volker RW ED - Götz, Andy ED - Venter, Johan ED - White, Karen ED - Robichon, Marie ED - Rowland, Vivienne TI - Phoebus Tools and Services J2 - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023 CY - Cape Town, South Africa T2 - International Conference on Accelerator and Large Experimental Physics Control Systems T3 - 19 LA - english AB - The Phoebus toolkit consists of a variety of control system applications providing user interfaces to control systems and middle-layer services. Phoebus is the latest incarnation of Control System Studio (CS-Studio), which has been redesigned replacing the underlying Eclipse RCP framework with standard Java alternatives like SPI, preferences, etc. Additionally the GUI toolkit was switched from SWT to JavaFX. This new architecture has not only simplified the development process while preserving the extensible and pluggable aspects of RCP, but also improved the performance and reliability of the entire toolkit. The Phoebus technology stack includes a set of middle-layer services that provide functionality like archiving, creating and restoring system snapshots, consolidating and organizing alarms, user logging, name lookup, etc. Designed around modern and widely used web and storage technologies like Spring Boot, Elastic, MongoDB, Kafka, the Phoebus middle-layer services are thin, scalable, and can be easily incorporated in CI/CD pipelines. The clients in Phoebus leverage the toolkit’s integration features, including common interfaces and utility services like adapter and selection, to provide users with a seamless experience when interacting with multiple services and control systems. This presentation aims to provide an overview of the Phoebus technology stack, highlighting the benefits of integrated tools in Phoebus and the microservices architecture of Phoebus middle-layer services. PB - JACoW Publishing CP - Geneva, Switzerland SP - 944 EP - 948 KW - controls KW - framework KW - EPICS KW - interface KW - site DA - 2024/02 PY - 2024 SN - 2226-0358 SN - 978-3-95450-238-7 DO - doi:10.18429/JACoW-ICALEPCS2023-TUSDSC08 UR - https://jacow.org/icalepcs2023/papers/tusdsc08.pdf ER - TY - CONF AU - Jamilkowski, J.P. AU - Tian, Y. ED - Schaa, Volker RW ED - Götz, Andy ED - Venter, Johan ED - White, Karen ED - Robichon, Marie ED - Rowland, Vivienne TI - VME2E: VME to Ethernet - Common Hardware Platform for legacy VME Module Upgrade J2 - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023 CY - Cape Town, South Africa T2 - International Conference on Accelerator and Large Experimental Physics Control Systems T3 - 19 LA - english AB - VME architecture was developed in late 1970s. It has proved to be a rugged control system hardware platform for the last four decades. Today the VME hardware platform is facing four challenges from 1) backplane communication speed bottleneck; 2) computing power limits from centralized computing infrastructure; 3) obsolescence and cost issues to support a real-time operating system; 4) obsolescence issues of the legacy VME hardware. The next generation hardware platform such as ATCA and microTCA requires fundamental changes in hardware and software. It also needs large investment. For many legacy system upgrades, this approach is not applicable. We will discuss an open-source hardware platform, VME2E (VME to Ethernet), which allows the one-to-one replacement of legacy VME module without disassembling of the existing VME system. The VME2E has the VME form factor. It can be installed the existing VME chassis, but without use the VME backplane to communicate with the front-end computer and therefore solves the first three challenges listed above. The VME2E will only take advantage of two good benefits from a VME system: stable power supply which VME2E module will get from the backplane, and the cooling environment. The VME2E will have the most advanced 14nm Xilinx FPGA SOM with GigE for parallel computing and high speed communication. It has a high pin count (HPC) FPGA mezzanine connector (FMC) to benefit the IO daughter boards supply of the FMC ecosystem. The VME2E is designed as a low cost, open-source common platform for legacy VME upgrade. PB - JACoW Publishing CP - Geneva, Switzerland SP - 949 EP - 951 KW - FPGA KW - Ethernet KW - hardware KW - controls KW - real-time DA - 2024/02 PY - 2024 SN - 2226-0358 SN - 978-3-95450-238-7 DO - doi:10.18429/JACoW-ICALEPCS2023-WE1BCO01 UR - https://jacow.org/icalepcs2023/papers/we1bco01.pdf ER - TY - CONF AU - Gofron, K.J. AU - Knudson, R. AU - Ndo, C. AU - Vacaliuc, B. ED - Schaa, Volker RW ED - Götz, Andy ED - Venter, Johan ED - White, Karen ED - Robichon, Marie ED - Rowland, Vivienne TI - Noise Mitigation for Neutron Detector Data Transport J2 - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023 CY - Cape Town, South Africa T2 - International Conference on Accelerator and Large Experimental Physics Control Systems T3 - 19 LA - english AB - Detector events at User Facilities require real-time fast transport of large data sets. Since construction, the SNS user facility successfully transported data using an in-house solution based on Channel Link LVDS point-to-point data protocol. Data transport solutions developed more recently have higher speed and more robustness; however, the significant hardware infrastructure investment limits migration to them. Compared to newer solutions the existing SNS LVDS data transport uses only parity error detection and LVDS frame error detection. The used channel link is DC coupled, and thus sensitive to noise from the electrical environment since it is difficult to maintain the same LVDS common reference potential over an extensive system of electronic boards in detector array networks. The SNS existing Channel Link uses LVDS for data transport with clock of about 40 MHz and a mixture of parallel and serial data transport. The 7 bits per twisted pair in each clock cycle are transported over three pairs of Cat7 cable. The maximum data rate is about 840 Mbps per cat7 cable. The DS90CR217 or DS90CR218 and SN65LVDS32BD components are used with shielded Cat7 cabling in transporting LVDS data. Here we discuss noise mitigation methods to improve data transport within the existing as build infrastructure. We consider the role of shielding, ground loops, as well as specifically the use of toric ferrite insolation transformer for rf noise filtering. PB - JACoW Publishing CP - Geneva, Switzerland SP - 1066 EP - 1070 KW - detector KW - FEM KW - electron KW - neutron KW - power-supply DA - 2024/02 PY - 2024 SN - 2226-0358 SN - 978-3-95450-238-7 DO - doi:10.18429/JACoW-ICALEPCS2023-WE3AO03 UR - https://jacow.org/icalepcs2023/papers/we3ao03.pdf ER - TY - CONF AU - Sukhanov, A. ED - Schaa, Volker RW ED - Götz, Andy ED - Venter, Johan ED - White, Karen ED - Robichon, Marie ED - Rowland, Vivienne TI - Measurement of Magnetic Field Using System-On-Chip Sensors J2 - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023 CY - Cape Town, South Africa T2 - International Conference on Accelerator and Large Experimental Physics Control Systems T3 - 19 LA - english AB - Magnetic sensors have been developed utilizing various physical phenomena such as Electromagnetic Induction, Hall Effect, Tunnel Magnetoresistance(TMR), Giant Magnetoresistance (GMR), Anisotropic Magnetoresistance (AMR) and Giant Magnetoimpedance (GMI). The compatibility of solid-state magnetic sensors with complementary metal-oxide-semiconductor (CMOS) fabrication processes makes it feasible to achieve integration of sensor with sensing and computing circuitry at the same time, resulting in systems on chip. In this paper we describe application of AMR, TMR and Hall effect integrated sensors for precise measurement of 3D static magnetic field in wide range of magnitudes from 10⁻⁶ T to 0.3 T, as well as pulsed magnetic field up to 0.3 T. PB - JACoW Publishing CP - Geneva, Switzerland SP - 1083 EP - 1086 KW - controls KW - radiation KW - interface KW - electron KW - monitoring DA - 2024/02 PY - 2024 SN - 2226-0358 SN - 978-3-95450-238-7 DO - doi:10.18429/JACoW-ICALEPCS2023-WE3AO07 UR - https://jacow.org/icalepcs2023/papers/we3ao07.pdf ER - TY - CONF AU - Lange, R. AU - Dalesio, L.R. AU - Davidsaver, M.A. AU - Hartman, S.M. AU - Johnson, A.N. AU - Junkes, H. AU - Kasemir, K.-U. AU - Korhonen, T. AU - Kraimer, M.R. AU - McIntyre, G.S. AU - Rose, S.C.F. AU - Shroff, K. AU - Veseli, S. AU - White, G.R. ED - Schaa, Volker RW ED - Götz, Andy ED - Venter, Johan ED - White, Karen ED - Robichon, Marie ED - Rowland, Vivienne TI - Five years of EPICS 7 - Status Update and Roadmap J2 - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023 CY - Cape Town, South Africa T2 - International Conference on Accelerator and Large Experimental Physics Control Systems T3 - 19 LA - english AB - After its first release in 2017, EPICS version 7 has been introduced into production at several sites. The central feature of EPICS 7, the support of structured data through the new pvAccess network protocol, has been proven to work in large production systems. EPICS 7 facilitates the implementation of new functionality, including developing AI/ML applications in controls, managing large data volumes, interfacing to middle-layer services, and more. Other features like support for the IPv6 protocol and enhancements to access control have been implemented. Future work includes integrating a refactored API into the core distribution, adding modern network security features, as well as developing new and enhancing existing services that take advantage of these new capabilities. The talk will give an overview of the status of deployments, new additions to the EPICS Core, and an overview of its planned future development. PB - JACoW Publishing CP - Geneva, Switzerland SP - 1087 EP - 1092 KW - EPICS KW - controls KW - network KW - site KW - status DA - 2024/02 PY - 2024 SN - 2226-0358 SN - 978-3-95450-238-7 DO - doi:10.18429/JACoW-ICALEPCS2023-TH1BCO01 UR - https://jacow.org/icalepcs2023/papers/th1bco01.pdf ER - TY - CONF AU - Sukhanov, A. AU - Morris, J. ED - Schaa, Volker RW ED - Götz, Andy ED - Venter, Johan ED - White, Karen ED - Robichon, Marie ED - Rowland, Vivienne TI - Secure Role-Based Access Control for RHIC Complex J2 - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023 CY - Cape Town, South Africa T2 - International Conference on Accelerator and Large Experimental Physics Control Systems T3 - 19 LA - english AB - This paper describes the requirements, design, and implementation of Role-Based Access Control (RBAC) for RHIC Complex. The system is being designed to protect from accidental, unauthorized access to equipment of the RHIC Complex, but it also can provide significant protection against malicious attacks. The role assignment is dynamic. Roles are primarily based on user id but elevated roles may be assigned for limited periods of time. Protection at the device manager level may be provided for an entire server or for individual device parameters. A prototype version of the system has been deployed at RHIC complex since 2022. The authentication is performed on a dedicated device manager, which generates an encrypted token, based on user ID, expiration time, and role level. Device managers are equipped with an authorization mechanism, which supports three methods of authorization: Static, Local and Centralized. Transactions with token manager take place ’atomically’, during secured set() or get() requests. The system has small overhead: ~0.5 ms for token processing and ~1.5 ms for network round trip. Only python based device managers are participating in the prototype system. Testing has begun with C++ device managers, including those that run on VxWorks platforms. For easy transition, dedicated intermediate shield managers can be deployed to protect access to device managers which do not directly support authorization. PB - JACoW Publishing CP - Geneva, Switzerland SP - 1150 EP - 1154 KW - controls KW - operation KW - software KW - network KW - EPICS DA - 2024/02 PY - 2024 SN - 2226-0358 SN - 978-3-95450-238-7 DO - doi:10.18429/JACoW-ICALEPCS2023-TH2AO05 UR - https://jacow.org/icalepcs2023/papers/th2ao05.pdf ER - TY - CONF AU - Clark, S.L. AU - D’Ottavio, T. AU - Harvey, M. AU - Jamilkowski, J.P. AU - Morris, J. AU - Nemesure, S. ED - Schaa, Volker RW ED - Götz, Andy ED - Venter, Johan ED - White, Karen ED - Robichon, Marie ED - Rowland, Vivienne TI - Reflective Servers: Seamless Offloading of Resource Intensive Data Delivery J2 - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023 CY - Cape Town, South Africa T2 - International Conference on Accelerator and Large Experimental Physics Control Systems T3 - 19 LA - english AB - Brookhaven National Laboratory’s Collider-Accelerator Department houses over 550 Front-End Computers (FECs) of varying specifications and resource requirements. These FECs provide operations-critical functions to the complex, and uptime is a concern among the most resource constrained units. Asynchronous data delivery is widely used by applications to provide live feedback of current conditions but contributes significantly towards resource exhaustion of FECs. To provide a balance of performance and efficiency, the Reflective system has been developed to support unrestricted use of asynchronous data delivery with even the most resource constrained FECs in the complex. The Reflective system provides components which work in unison to offload responsibilities typically handled by core controls infrastructure to hosts with the resources necessary to handle heavier workloads. The Reflective system aims to be a drop-in component of the controls system, requiring few modifications and remaining completely transparent to users and applications alike. PB - JACoW Publishing CP - Geneva, Switzerland SP - 1201 EP - 1205 KW - interface KW - controls KW - operation KW - hardware KW - software DA - 2024/02 PY - 2024 SN - 2226-0358 SN - 978-3-95450-238-7 DO - doi:10.18429/JACoW-ICALEPCS2023-THMBCMO07 UR - https://jacow.org/icalepcs2023/papers/thmbcmo07.pdf ER - TY - CONF AU - Nguyen, L.K. AU - Brown, K.A. AU - Costanzo, M.R. AU - Gao, Y. AU - Harvey, M. AU - Jamilkowski, J.P. AU - Morris, J. AU - Schoefer, V. ED - Schaa, Volker RW ED - Götz, Andy ED - Venter, Johan ED - White, Karen ED - Robichon, Marie ED - Rowland, Vivienne TI - A Physics-Based Simulator to Facilitate Reinforcement Learning in the RHIC Accelerator Complex J2 - Proc. of ICALEPCS2023, Cape Town, South Africa, 09-13 October 2023 CY - Cape Town, South Africa T2 - International Conference on Accelerator and Large Experimental Physics Control Systems T3 - 19 LA - english AB - The successful use of machine learning (ML) in particle accelerators has greatly expanded in recent years; however, the realities of operations often mean very limited machine availability for ML development, impeding its progress in many cases. This paper presents a framework for exploiting physics-based simulations, coupled with real machine data structure, to facilitate the investigation and implementation of reinforcement learning (RL) algorithms, using the longitudinal bunch-merge process in the Booster and Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL) as examples. Here, an initial fake wall current monitor (WCM) signal is fed through a noisy physics-based model simulating the behavior of bunches in the accelerator under given RF parameters and external perturbations between WCM samples; the resulting output becomes the input for the RL algorithm and subsequent pass through the simulated ring, whose RF parameters have been modified by the RL algorithm. This process continues until an optimal policy for the RF bunch merge gymnastics has been learned for injecting bunches with the required intensity and emittance into the Relativistic Heavy Ion Collider (RHIC), according to the physics model. Robustness of the RL algorithm can be evaluated by introducing other drifts and noisy scenarios before the algorithm is deployed and final optimization occurs in the field. PB - JACoW Publishing CP - Geneva, Switzerland SP - 1630 EP - 1636 KW - cavity KW - controls KW - booster KW - simulation KW - diagnostics DA - 2024/02 PY - 2024 SN - 2226-0358 SN - 978-3-95450-238-7 DO - doi:10.18429/JACoW-ICALEPCS2023-FR2AO04 UR - https://jacow.org/icalepcs2023/papers/fr2ao04.pdf ER -