

The SKA Dish Local Monitoring and Control System

S. Riggi for the SKA Dish LMC team (*) INAF - Osservatorio Astrofisico di Catania, Italy

The Square Kilometer Array (SKA): the world's largest and most sensitive radio observatory

2 radio antenna arrays (Fig. 1)

- > SKA1-Mid: South Africa
- > SKA1-Low: Western Australia

2 construction phases foreseen

- > Phase 1 (2018-2024): SKA1-Mid + SKA1-Low arrays
- > Phase 2 (mid 2020s): expansions of both arrays in Southern Africa and Australia

SKA pre-construction phase 1 ongoing

- > Lead by 8 major consortia coordinated by the SKA Organization
- > 10 member countries, >100 research institutions and companies across 20 countries
- Consortia completing their critical design

Fig. 1: SKA1-Low (top) and Mid (bottom) locations

SKA1-Mid array layout (Fig. 2)

- 130 15-m diameter dish antennas (+64 Meerkat dishes)
- Extension: 120 km
- Observing frequencies: 0.35-14 GHz
- Phase 1: band 1, 2 in each dish, band 5 in 67 dishes
- Extension to ~2500 antennas in SKA 2

Fig. 2: Pictorial view of SKA1-Mid array (left) and dish antenna (right). Image credits: SKAO

SKA DISH OVERVIEW

Dish instrumentation (Fig. 3) mounted at <u>3 major locations</u> (indexer, pedestal, yoke) and designed by:

- **Dish Structure (DS)**: antenna structure and optics, feed indexer, servo systems, power distribution and safety systems.
- Single-Pixel Feed (SPF): feed packages (OMTs, LNAs), feed helium cooling and vacuum system and relative controllers.
- Receiver (SPFRx): RF digitizer system and relative controllers.

Fig. 3: Dish instrumentation

Fig. 4: High-level SKA1-Mid CS hierarchy

DISH LMC ROLE IN SKA CS

SKA Control System (CS) design (Fig. 4)

- based on Tango framework
- > organized in hierarchical Element facilities (=Tango domains)
- > Harmonized across Elements with common guidelines & patterns

❖ Each Dish has a Local Monitoring and Control (LMC) system

- > LMC provides dish master control and rolled-up monitoring to Telescope Manager (TM)
- TM remotely coordinates the telescope scientific and M&C operations

❖ Dish LMC "size" from a M&C view

- Monitoring points: <2000
- M&C data flow to TM: ~200 kbps
- Fastest M&C rate: 100 ms
- Number of Tango Device Servers (TDS): <20

DISH LMC DESIGN AND PROTOTYPE

Dish LMC high-level architecture designed (Fig. 5)

- ➤ 1 master TDS for high-level Dish M&C
- > 1 TDS controller per Dish sub-element
- > 1 logger/archiver/alarm handler TDS per Dish instance
- Additional TDS for LMC self M&C, power control

Prototype implementation started

- Aim: design validation + dish qualification
- Technologies selected (Table 1)
- Tango extensions implemented

LMC Tango extensions

- Logging to syslog targets
- Dynamic attributes from XML config files
- Tango attribute-based command state machines
- Formula attributes
- Tango device proxy utilities
- Task sequences
- Tango-Nagios interface

Fig. 5: D	Dish LMC	high-level	architectu	re

Table 1: List of Dish LMC prototype employed technologies			
Type	Technology		
Progr. language(s)	C++ (control system), python (configuration & testing)		
M&C framework	Tango 9		
Tango tools	PyTango, yat4tango, Elettra Alarm System, HDB++ Archiver, Taurus GUI		
Libraries & tools	boost, jsoncpp, pugixml, Exprtk, Nagios 4		
Build system	cmake		
Version control	git (GitLab)		
Testing	Google Test, python behave + nose		
Configuration management	Ansible		
Continuous integration	Jenkins		
Documentation	Doxygen + Sphinx/breathe		
Virtualization & OS	VirtualBox, Ubuntu 14/16		