ITER Controls Design Status & Progress

W.-D. Klotz

ITER Organization, F-13067 St Paul-lez-Durance, France

Acknowledgements:

Many colleagues in the CODAC group, ITER Members and ITER IO

This report was prepared as an account of work by or for the ITER Organization. The Members of the Organization are the People's Republic of China, the European Atomic Energy Community, the Republic of India, Japan, the Republic of Korea, the Russian Federation, and the United States of America. The views and opinions expressed herein do not necessarily reflect those of the Members or any agency thereof. Dissemination of the information in this paper is governed by the applicable terms of the ITER Joint Implementation Agreement.

Synopsis

• ITER Project Quick Start

System Scope & Management Challenges

Some Current Activities

What are ITER's Aims?

The overall programmatic objective:

• to demonstrate the scientific and technological <u>feasibility of fusion</u> <u>energy for peaceful purposes.</u>

The principal goal:

- to design, construct and operate a tokamak experiment at a scale which satisfies this objective.
- ITER is designed to confine a plasma in which α -particle heating dominates all other forms of plasma heating:
 - ⇒ ITER will be the world's first experimental fusion reactor with a **self-sustained burning** plasma of **several hundred** seconds (Inductive operation) to **several thousand** seconds (Non-inductive operation) duration

What are ITER's Aims?

The overall programmatic objective:

 to demonstrate the scientific and technological <u>feasibility of fusion</u> <u>energy for peaceful purposes</u>

The principal goal:

- to design, construct and operate a tokamak experiment at a scale which satisfies this objective
- ITER is designed to confine a plasma in which α -particle heating dominates all other forms of plasma heating:
 - ⇒ ITER will be the world's first experimental fusion reactor with a **self-sustained burning** plasma of **several hundred** seconds (Inductive

Challenge #1: Long Plasma Pulses

Fusion Power Production in ITER

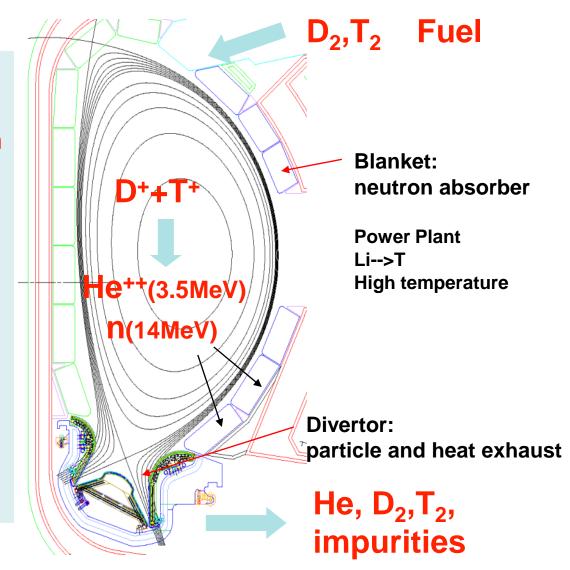
ITER Plasma:

R/a: 6.2 m /2 m

Volume: 830 m³

Plasma Current: 15 MA

Toroidal field: 5.3 T


Density: 10²⁰ m⁻³

Peak Temperature: 2×108 K

Fusion Power: 500 MW

Plasma Burn 300 - 500 s

("Steady-state" ~3000 s)

Fusion Power Production in ITER

ITER Plasma:

R/a: 6.2 m /2 m

Volume: 830 m³

Plasma Current: 15 MA

Toroidal field: 5.3 T

Density: 10²⁰ m⁻³

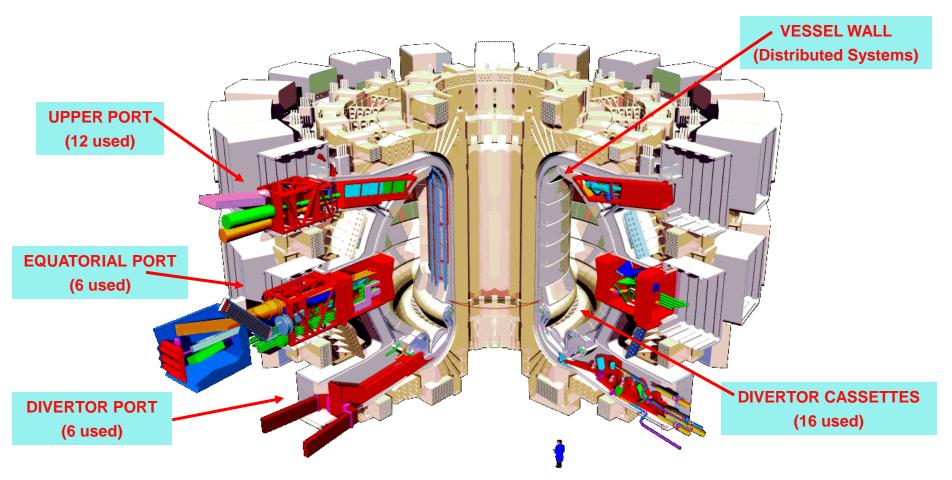
Peak Temperature: 2×10⁸ K

Fusion Power: 500 MW

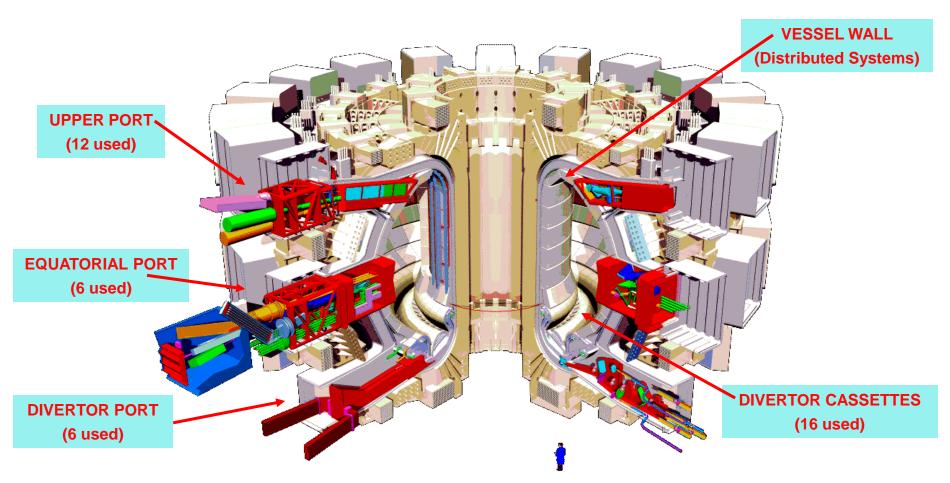
Plasma Burn 300 - 500 s


("Steady-state" ~3000 s)

 D_2, T_2 **Fuel** Blanket: neutron absorber **Power Plant** Li-->T **High temperature e**++(3.5MeV) 14MeV **Divertor:** particle and heat exhaust He. D_a.T_{a.}


Challenge #2: Nuclear Installation

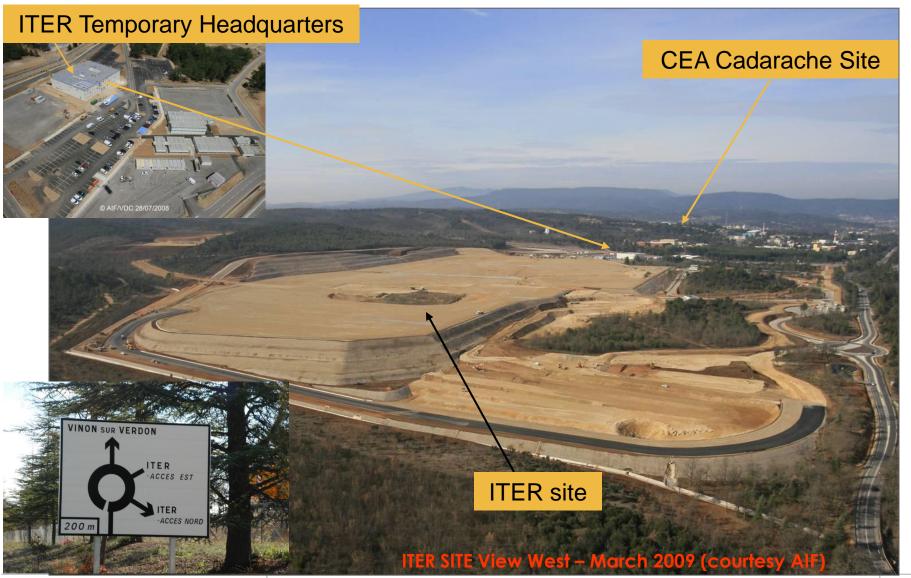
Overview of the ITER Tokamak



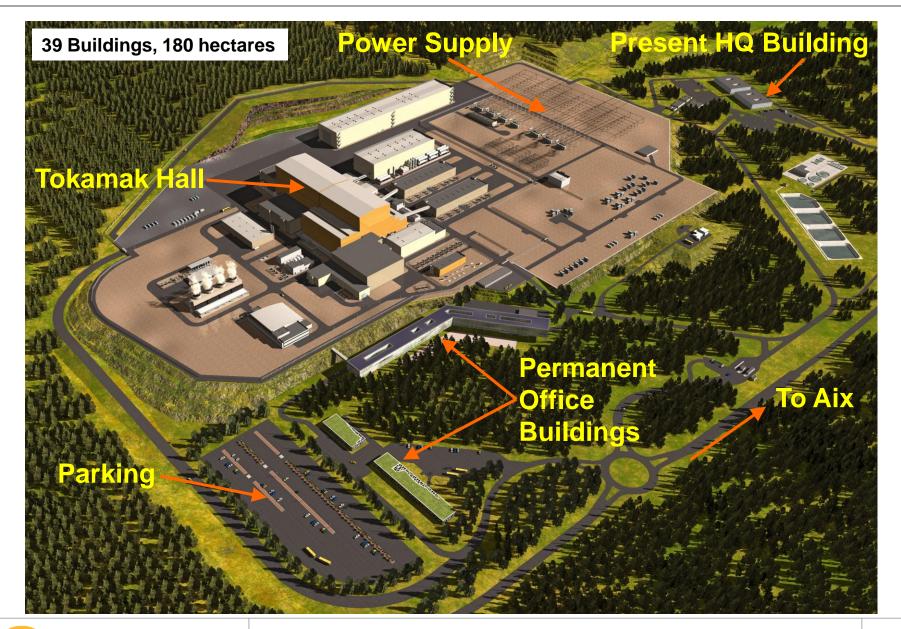
Plasma Diagnostics

- About 40 large scale plasma measurements systems foreseen:
 - Measurements from DC to γ -rays, neutrons, α -particles, plasma species
 - Diagnostics required for protection, control and physics studies

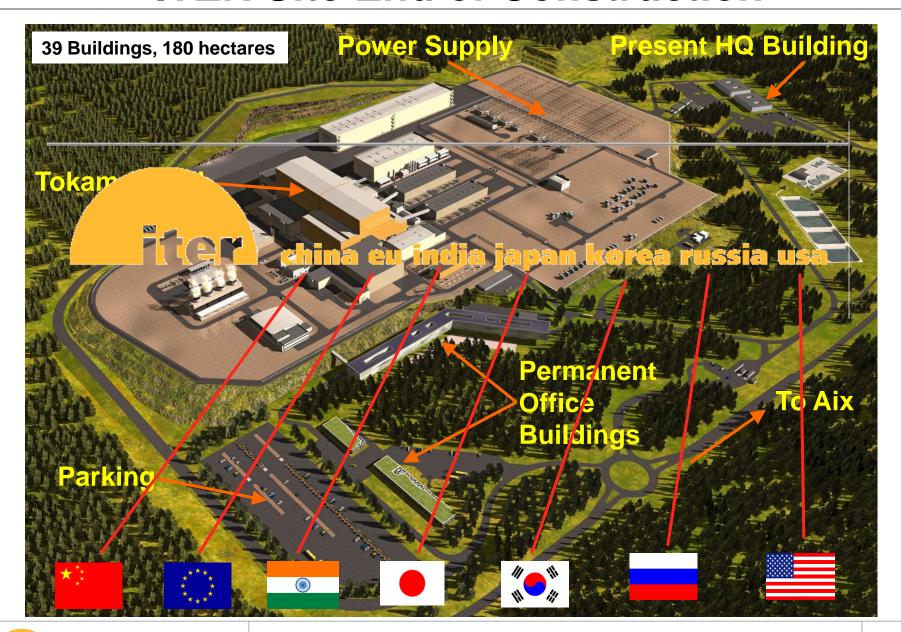
Plasma Diagnostics

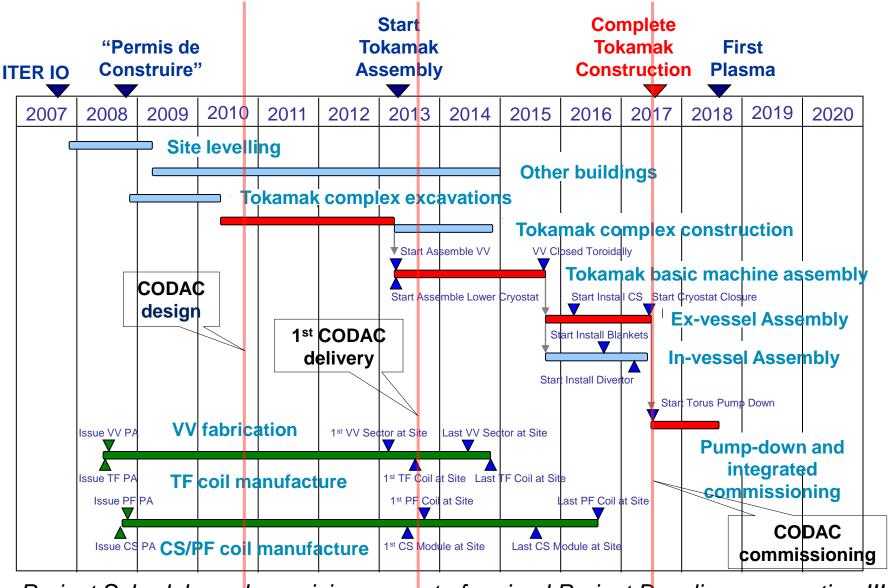


- About 40 large scale plasma measurements systems foreseen:
 - Measurements from DC to γ -rays, neutrons, α -particles, plasma species
 - Diagnostics required for protection, control and physics studies



ITER Construction at Cadarache


ITER Site preparations advancing - platform leveling complete


ITER Site End of Construction

ITER Site End of Construction

ITER Reference Project Schedule

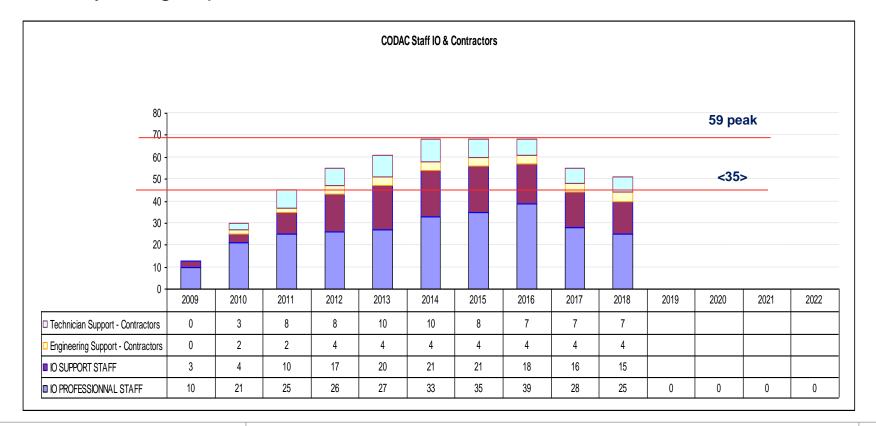
Project Schedule under revision as part of revised Project Baseline preparation !!!

Synopsis

ITER Project Quick Start

System Scope & Management Challenges

Some Current Activities

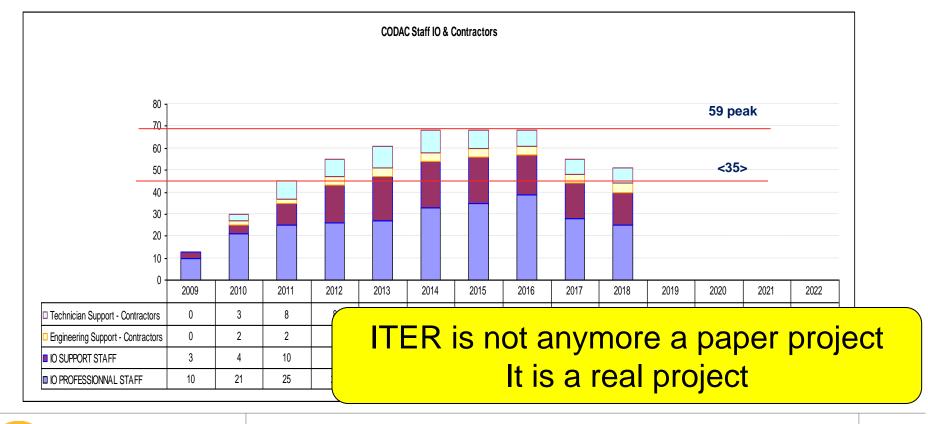

Brief History

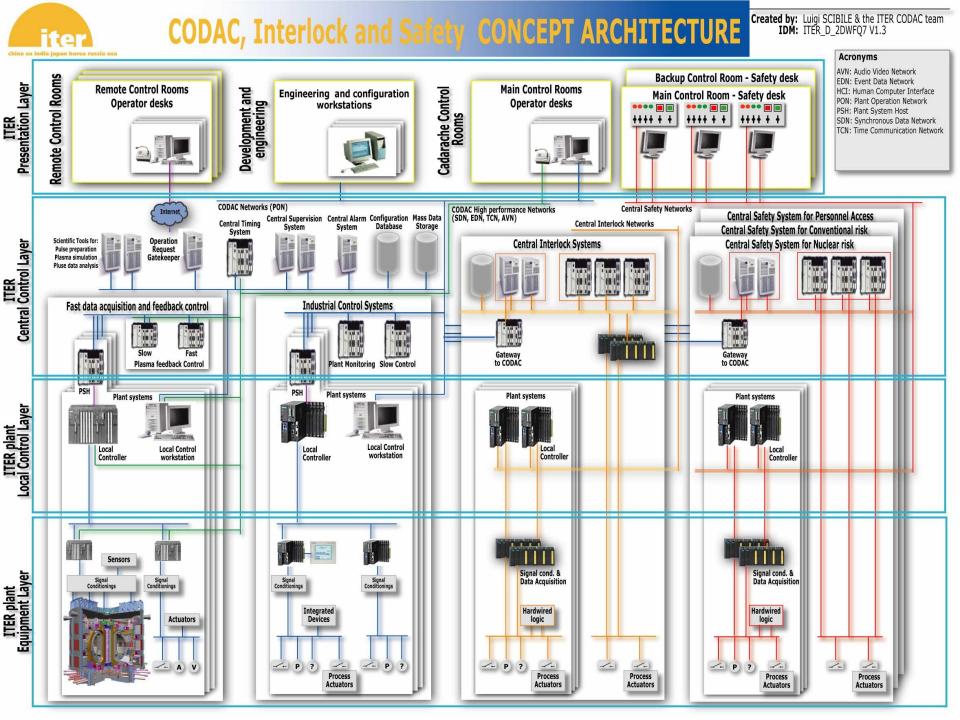
A conceptual design of CODAC was developed by Jo Lister, with support from the fusion community, in 2006 and 2007.

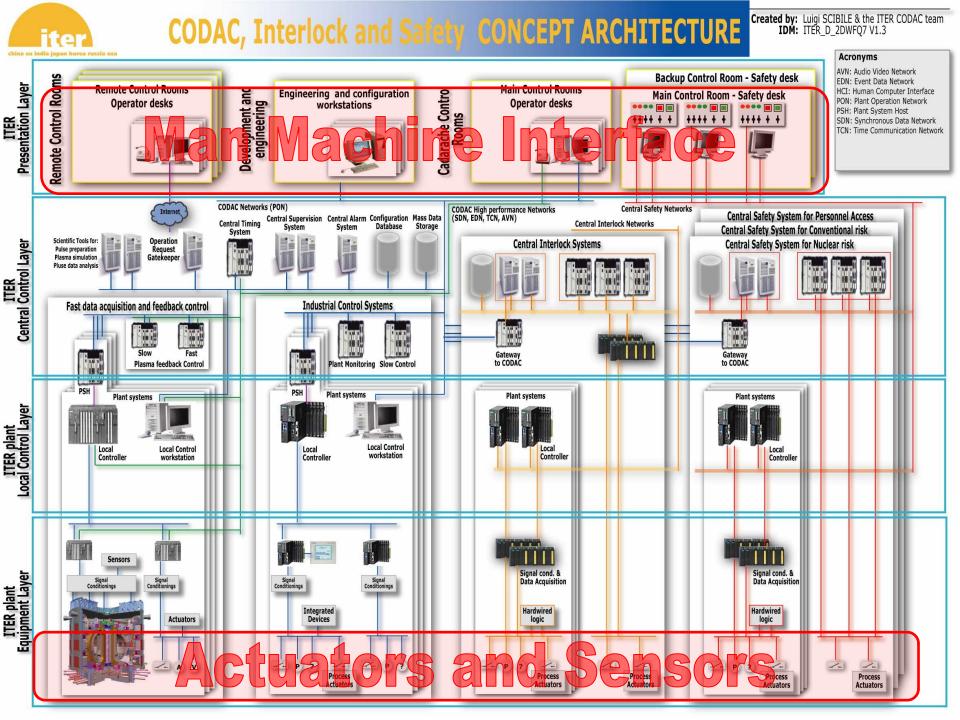
This conceptual design was successfully reviewed in Nov 2007.

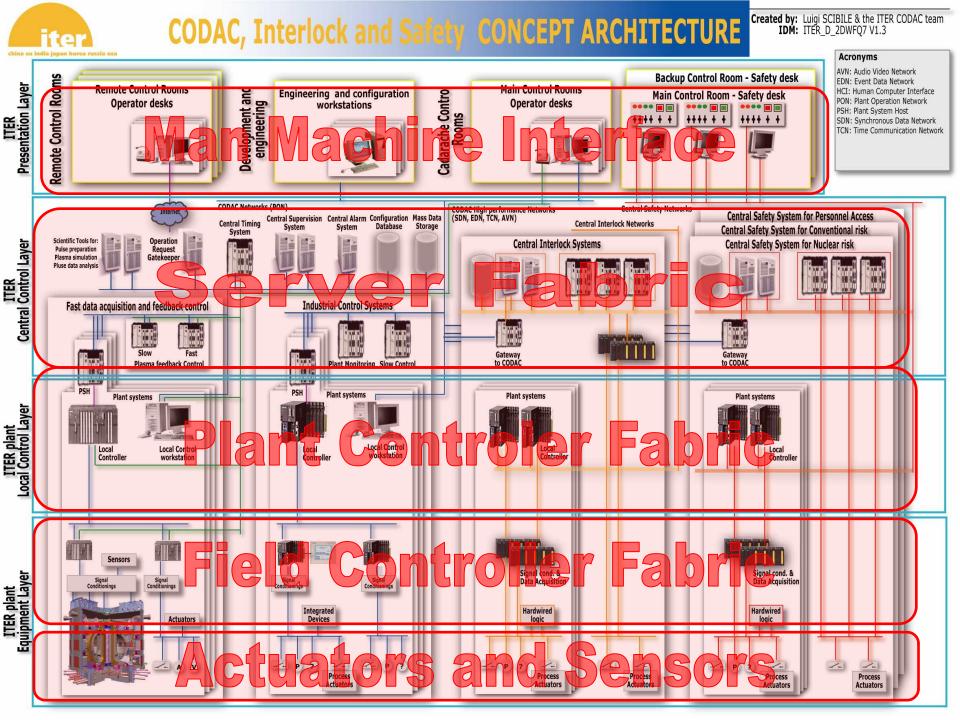
A CODAC group started to form at ITER Organization Cadarache in spring 2008.

Today that group counts 14 and will raise to 19 at the end of 2009.

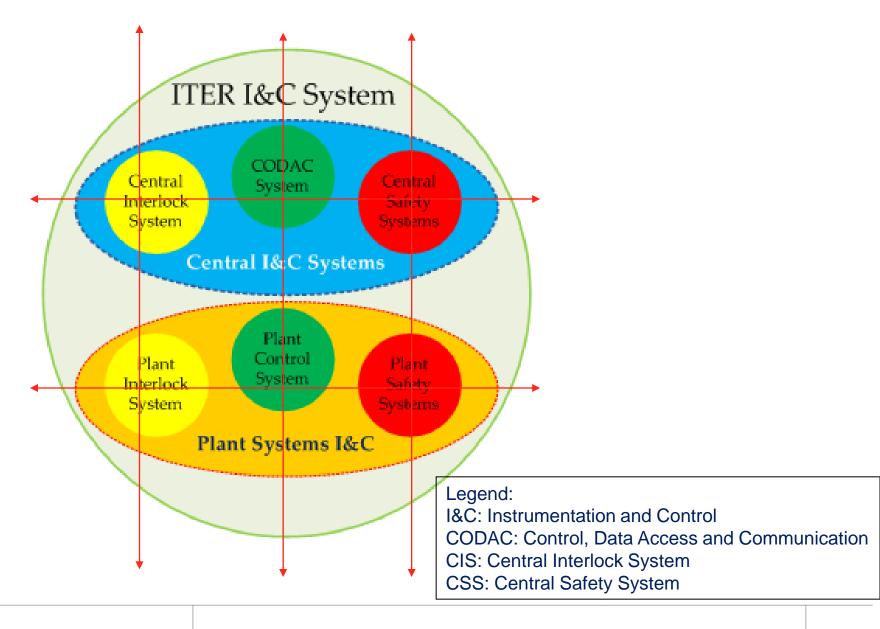

Brief History

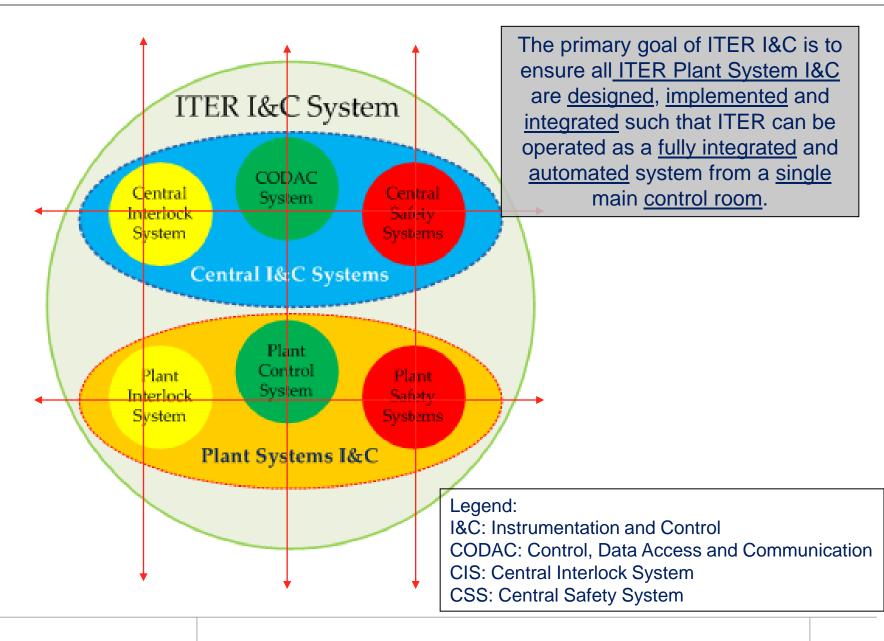

A conceptual design of CODAC was developed by Jo Lister, with support from the fusion community, in 2006 and 2007.

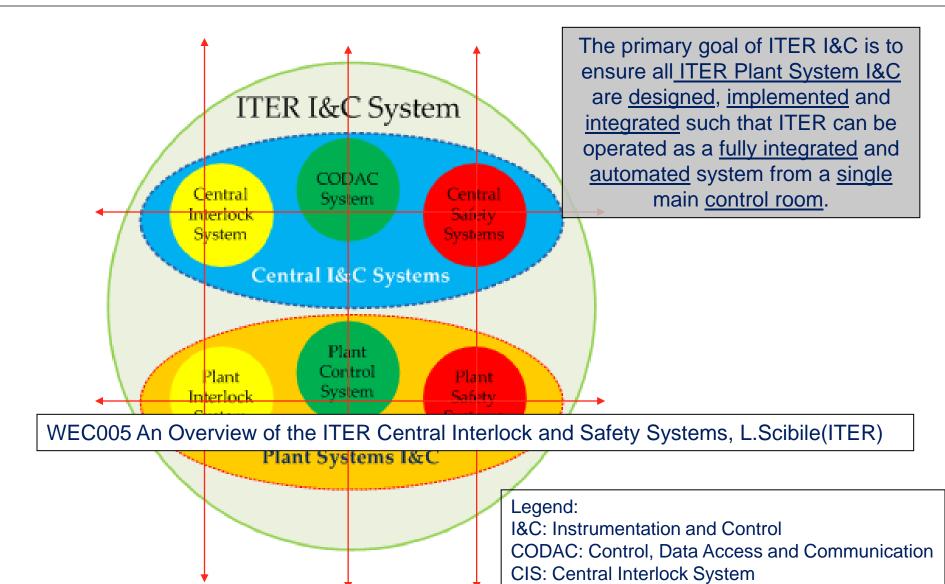

This conceptual design was successfully reviewed in Nov 2007.


A CODAC group started to form at ITER Organization Cadarache in spring 2008.

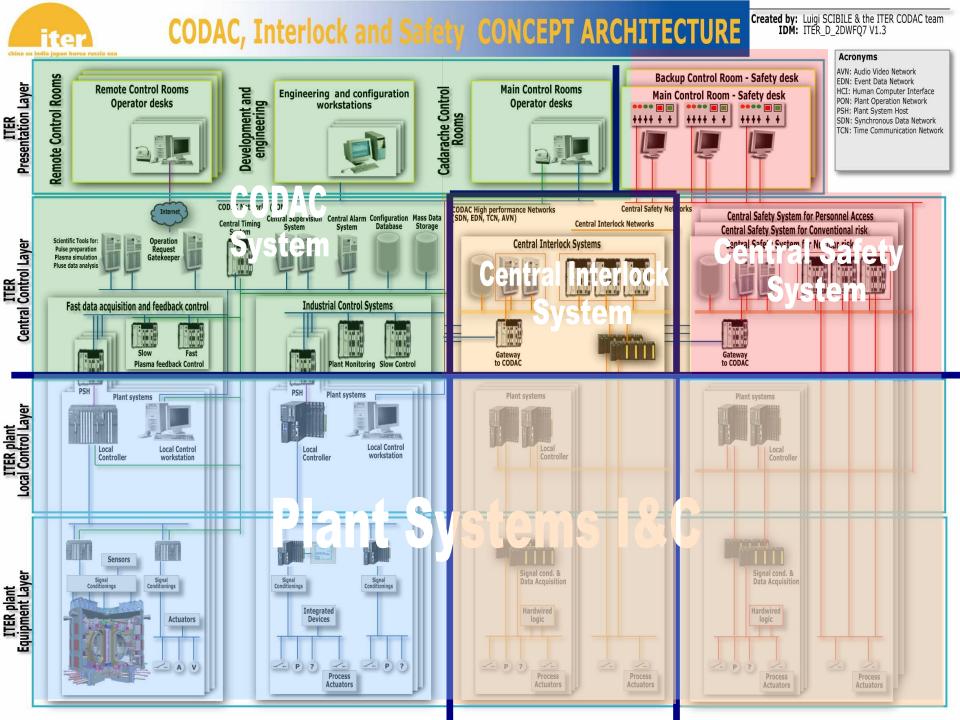
Today that group counts 14 and will raise to 19 at the end of 2009.

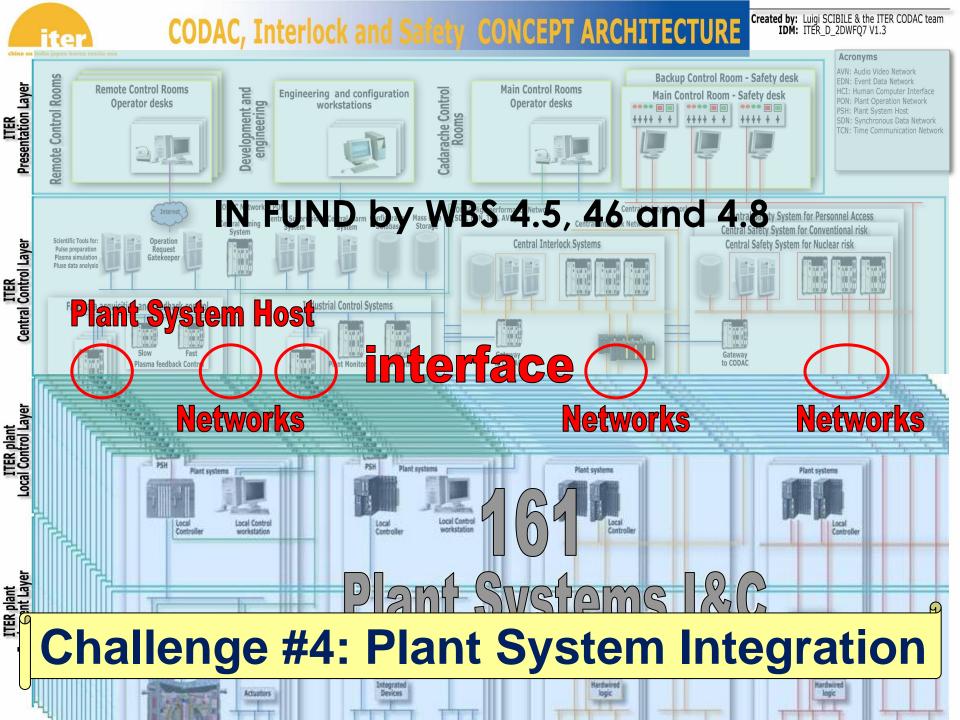


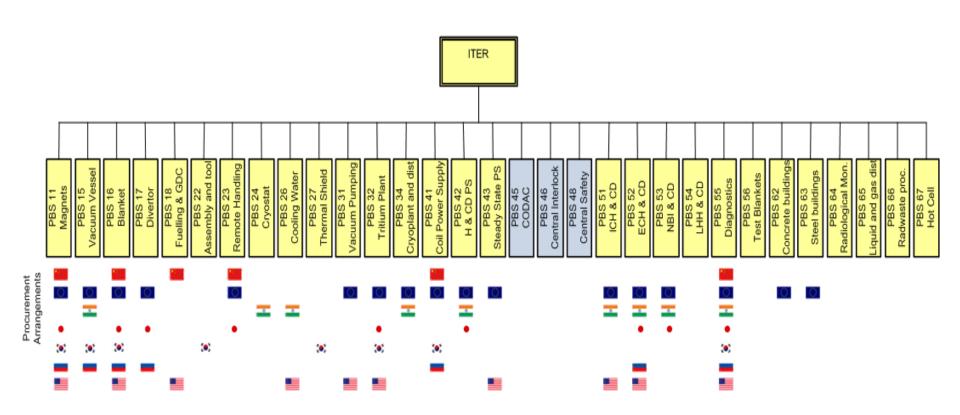



Definitions

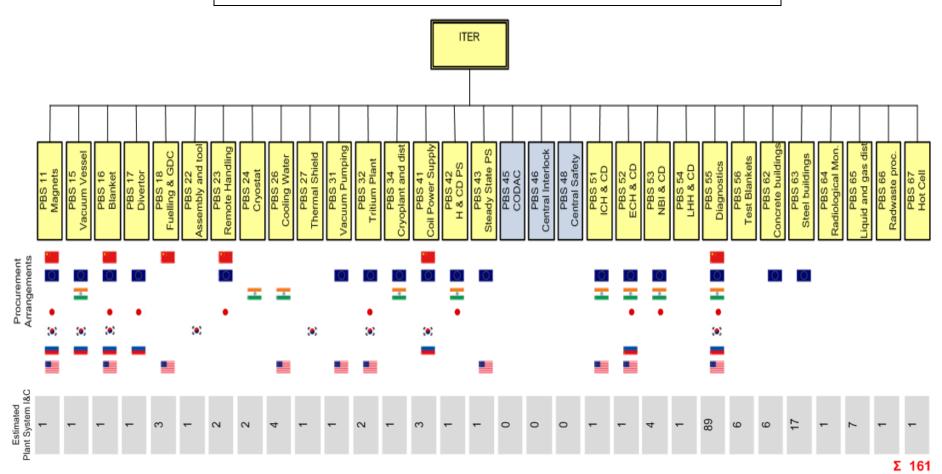
Definitions



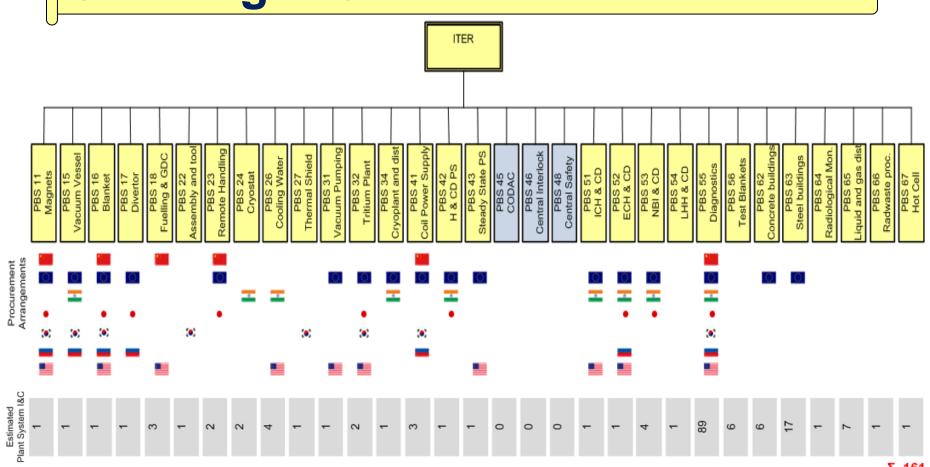

Definitions



CSS: Central Safety System


Plant System I&C Identification

Plant System I&C Identification



A Plant System I&C has one and only one Plant System Host

Plant System I&C Identification

Challenge #5: In Kind Procurement

Σ 161

A Plant System I&C has one and only one Plant System Host

Plant Breakdown Structure & Interface Matrix

PBS Matrix		11	15	16	17	1	8	22	23	24	26	27	31	32	34	41	42	43	44	45	46	47 48	51	52	53	54	55	56 58	61	62	63	64	65	66 69	70	98
ITER Magnet Sys	11			T		\top	1	✓	×	•		•	•	T	•	•		•		•	V	✓			T		•			V			V			П
VV ELM and Manifolds	15			•	•	•	•	•	•	•	•	•		\times	\times			•		•	•		•	•	4	•	•	•		V		\times		\times		
Blanket systems	16		•		V	>	K	V	\times		•		×	×				•		•	V		V	\times	V	×	×	×		V		×	×	\times		
Divertor	17		•	V		√		✓	~		•		V	V				•		•	V						✓			V		V	×	✓		П
Fueling&WallConditioning	18		•	\times	V			×	\times	\times	•	\times	×	\times	\times			•		•	V	~	V	\times	•		\times			V			V	×		
Machine Assembly&Tooling	22	V	•	V	V	>	<		×	V	V	V	V	×	×	TX.		V		•			×	V	V	×	×	×	V	4	×		V	\times		П
Remote Handling System	23	\times	•	×	V	>	<	×		\times	\times	×	×	\times				•		\times	V	✓	•	\times	V	×	×	×	×	•		×	V	\times		П
Cryostat	24	•	•			>	Κ.	✓	\times		•	\times	\times	\times	\times			•		•		•					\times			V			/			
Cooling Water System	26		•	•	•	•	•	V	\times	•			•	•	•	•		•		•	•	•	•	•	V	•	•	•	V	V	4		4	•		
Thermal Shield	27	•	•			\rightarrow	Κ.	✓	X	X			X		\times			•		•							\times			4				\times		
Vacuum	31	•	•	×	V	· >	K	✓	X	×	•	×		×	•	П		•		•	•	•	•	×	•	×	×	X		V			4	×		П
Tritium plant	32		\times	\times	~	>	<	\times	\times	\times	•		×					•		•	~	✓			•		•	\times		4		\times	4	\times		11
Cryoplant & Distribution	34	•	\times			>	K	×		X	•	\times	•			X		•		•	/	✓		\times			\times		V	V	•		4			
Coil Supply&Distribution	41	•		П		Т	╗	×			•			Т	×	П		•		~	/	✓			Т				V	4	4		4			П
H&CD Power supply	42					T	1																													П
SSEN	43	•	•	•	•	•	•	✓	•	•	•	•	•	•	•	•				V	>	✓	•	•	•	•	•	•	•	•	•	•	•	•		
Cable Trays System	44					Т																												\times		
CODAC	45	•	•	•	•	•	•	•	\times	•	•	•	•	•	•	V		✓			/	✓	V	•	V	•	\times	•	✓	✓	✓	•	✓	✓ •		
Central Interlock system	46	\checkmark	•	4	4	•			/		•		•	4	V	V		V		4		✓	V	•	4	4	•	•	V	V	4	•	\times			Ш
	47					\perp	4								\perp																				$\parallel \perp \mid$	Ш
Central Safety system	48	V				V			\checkmark	•	•		•	V	V	V		✓		✓	/			4	V		•	•	✓	✓	4	✓	V	•	lacksquare	Ш
IC H&CD system	51		•	V		V		×	•		•		•					•		V	>						\times			V	•		V	✓		
EC H&CD system	52		•	\times		>	K	V	\times		•		\times		\times			•		•	•	✓					\times		\times	\checkmark	•	\times	4	\times		
Neutral Beam H&CD system	53		V	4		•	•	✓	V		4		•	•				•		V	V	✓					V		V	•	\times	V	V	4		
Lower Hybrid H&CD system	54		•	\times				\times	\times		•		\times					•		•	/						\times		\times	✓	V		✓	\times		
	55	•	•	\times	V	>	Κ.	×	\times	\times	•	\times	\times	•	\times			•		\times	•	•	×	\times	V	\times				•	\times	\times	V	\times		Ш
	56		•	\times				×	\times		•		\times	\times				•		•	•	•								V			4	\times		Ш
Port Plug Test Facility	58						Щ																													ш
Site	61							✓	X		V				V	V		•		~	/	✓		\times	V	\times				×	V		\times	$\times \times$		
ReinforcedConcreteBuild	62	✓	✓	V	V	, ,		✓	•	V	V	V	>	V	V	V		•		~	V	✓	V	V	•	V	•	>	\times			V	\times	✓ ×		
Steel frame buildings	63					Т	П	×			V				•	V		•		<	~	~	•	•	×	V	\times		V				\times	$\times \times$		
Radiolg & Env Monitoring	64		\times	\times	V	1			\times					\times				•		•	•	✓		\times	V		\times			\checkmark				\times		
Liquid&Gas Distribution	65	4		×	\times		/	V	1	V	V		V	V	4	4		•		~	×	4	4	V	-0	-0	-0	-0	Ι×	\sim	\sim					믁
RadwasteTreatment&Storag	66		\times	\times	4	>	K	×	\times		•	\times	\times	\times				•		\checkmark		•	✓	>		Clic	k the	white ce	ll on	the I	eft c	reate	/del	ete interf	aces	
Access Control & Security	69						\perp												×	•				Ш	V	Allo	locur	nents are	е аррі	rove	1.					\neg
Site Outside Platform	70																								•	The	re is	at least o	ne d	ocun	ent	to be	арр	roved.		\exists
External Services	98					Ι																			×	An i	nterf	ace is ide	entifie	ed, b	ıt no	doc	umer	nts are ge	nerat	ed.

Plant Breakdown Structure & Interface Matrix

PBS Matrix		11	15	16	17	18	2	2 23	24	26	27	31	32	34	41	42	43	44	45	46	47 48	51	52	53	54	55	56 58	61	62	63	64	65	66 69	70	98
ITER Magnet Sys	11						V	<i>/</i> ×	•		•	•		•	•		•		•	V	✓					•			V			V		\blacksquare	\blacksquare
VV ELM and Manifolds	15			•	•	•	∥ •	•	•	•	•	•	\times	\times			•		•	•		•	•	4	•	•	•		~		\times		\times		
Blanket systems	16		•		4	×	V	/ >	(•		\sim	×				•		•	~		V	\times	4	\times	×	×		V		\times	×	\times		
Divertor	17		•	V		~	V	<i>,</i> ^	1	•		V	V				•		•	V						~			~		~	×	V		
Fueling&WallConditioning	18		•	\times	V		>	$\langle \rangle$	\sim	•	\times	\times	\times	\times			•		•	V	~	V	\times	•		×			V			✓	×		
Machine Assembly&Tooling	22	V	•	V	V	×		×	·	V	V	V	×	×	X		V		•			X	V	V	×	×	×	V	V	×		V	\times	\blacksquare	\blacksquare
Remote Handling System	23	\times	•	×	V	×	>	(×	×	×	×	×				•		×	V	~	•	\times	V	×	×	×	\times	•		\times	V	×		\blacksquare
Cryostat	24	•	•			\times	V	/ >		•	\times	\times	\times	\times			•		•		•					\times			V			4			
Cooling Water System	26		•	•	•	•	V	/ >	•			•	•	•	•		•		•	•	•	•	•	V	•	•	•	V	V	V		4	•		
Thermal Shield	27	•	•			\times	V	, >	\sim			\times		\times			•		•							\times			V				×		
Vacuum	31	•	•	×	4	×	V	/ >	\sim	•	×		×	•	П		٠		•	•	•	•	\times	•	×	×	×	1	V			4	×	\blacksquare	\Box
Tritium plant	32		\times	\times	4	\times	>	$\langle \rangle$	\times	•		\times					•		•	/	✓			•		•	×		✓		\times	4	\times		
Cryoplant & Distribution	34	•	X			\times	>	(\times	•	\times	•			X		•		•	V	~		\times			×		V	V	•		V			
Coil Supply&Distribution	41	•			П	П	>		Т	•				×			•		✓	V	✓							V	V	4		✓		\blacksquare	\blacksquare
H&CD Power supply	42																																		
SSEN	43	•	•	•	•	•	V	•	•	•	•	•	•	•	•				V	>	✓	•	•	•	•	•	•	•	•	•	•	•	•		
Cable Trays System	44																																\sim		
CODAC	45	•	•	•	•	•	•	\rightarrow	•	•	•	•	•	•	4		4			4	/	1	•	4	•	\times	•	4	4	4	•	4	✓ •		
Central Interlock system	46	V	•	V	V	V	╙	√	1	•		•	V	V	V		>		V		~	V	•	V	V	•	•	V	V	V	•	×		╨	$\perp\!\!\!\perp$
Plasma Control System	47						╙								_													╨						╨	$\perp\!\!\!\perp$
Central Safety system	48	>				✓	1	√	•	•		•	V	V	V		>		\checkmark	/			✓	✓		•	•	V	✓	✓	V	✓	•	Щ	\perp
IC H&CD system	51		•	✓		V	>	•		•		•					•		V	V						×			V	•		✓	*		
EC H&CD system	52		•	\times		\times	V	<i>></i>	(•		\times		\times			•		•	•	✓					\times		\parallel ×	V	•	\times	✓	\times		
Neutral Beam H&CD system			V	\checkmark		•	V	<i>'</i> •	1	V		•	•				•		V	V	~					V		4	•	×	V	4	4		
Lower Hybrid H&CD system	54		•	\times			>	$\langle \rangle$		•		\times					•		•	/						\times		$\parallel \times$	✓	V		✓	\times		
Diagnostics	55	•	•	\times	V	\times	>	$\langle \rangle$	\sim	•	\times	\times	•	\times			•		×	•	•	×	\times	V	×			╨	•	×	×	✓	×	╨	Ш
Test Blanket Modules Sys	56		•	×		╙	>	$\langle \rangle$		•		\times	×		_		•		•	•	•							Щ_	V			V	\times	╨	$\perp\!\!\!\perp$
Port Plug Test Facility	58						╙																					<u> </u>						Щ	\perp
Site	61						V	, >		V				✓	V		•		\checkmark	V	✓		\times	V	\times				×	V		×	$\times \times$		
ReinforcedConcreteBuild	62	V	V	V	V	V	V	•	V	V	V	V	V	✓	V		•		\checkmark	/	~	V	✓	•	V	•	✓	\times			V	×	✓ ×	╨	Ш
Steel frame buildings	63						>			~				•	~		•		✓	✓	✓	•	•	\times	✓	\times		V				×	$\times \times$		
Radiolg & Env Monitoring	64		\times	\times	4			>	(\perp			\times				•		•	•	4		\times	4		×			V				X	\bot	$\perp\!\!\!\perp$
Liquid&Gas Distribution	65	V		\times	\times	4	V	_	· 🗸	V		4	4	4	V		•		\checkmark	×	4	V	V	-0	-0	-0		II 🗙	\sim	\sim					
RadwasteTreatment&Storag	_		×	\times	V	\times	>	$\langle \rangle$		•	×	X	\times				•		\checkmark		•	✓	>		Clic	k the	white c	ell on	the I	eft ci	reate	/dele	te interl	aces	
Access Control & Security	69																	×	•				Ш.	✓ All documents are approved.											
Site Outside Platform	70																						Ш.	There is at least one document to be approved.											
External Services	98																						An interface is identified, but no documents are generate												ted.

Plant Breakdown Structure & Interface Matrix

PBS Matrix		11	15	16	17	18	2:	2 23	24	26	27	31	32	34	41	42	43	44	45	46	47 48	51	52	53	54	55	56 58	61	62	63	64	65	66 69	70	98	
ITER Magnet Sys	11						V	<i>,</i> ×	•	Т	•	•		•	•		•		•	V	~					•			V			V		\blacksquare	\blacksquare	
VV ELM and Manifolds	15			•	•	•	∥ •	•	•	•	•	•	\times	\times			•		•	•		•	•	4	•	•	•		~		\times		\times			
Blanket systems	16		•		V	×	V	<i>/</i> ×		•		\times	\times				•		•	>		V	\times	4	\times	×	×		4		\times	×	×			
Divertor	17		•	V		~	V	<i>,</i> ~	,	•		<	V				•		•	V						~			~		^	\times	V			
Fueling & Wall Conditioning	18		•	\times	V		>	\sim	\times	•	\times	\times	\times	\times			•		•	V	*	V	×	•		×			V			V	\times			
Machine Assembly&Tooling	22	V	•	V	V	×		×	4	4	V	V	×	×	X		V		•			×	V	V	×	×	×	V	V	×		V	×	\blacksquare	\Box	
Remote Handling System	23	\times	•	×	V	×	>		×	\times	×	\times	\times				•		×	V	~	•	\times	V	×	×	×	\times	•		\times	V	×			
Cryostat	24	•	•			\times	V	/ >		•	\times	\times	\times	\times			•		•		•					\times			V			V				
Cooling Water System	26		•	•	•	•	V	/ >	•			•	•	•	•		•		•	•	•	•	•	V	•	•	•	V	4	V		V	•			
Thermal Shield	27	•	•			\times	V	, >	\sim			X		\times			•		•							\times			V				×			
Vacuum	31	•	•	×	V	×	V	<i>/</i> ×	×	•	×		×	•	П		٠		•	•	•	•	\times	•	×	×	×	\blacksquare	4			V	×	\blacksquare	\Box	
Tritium plant	32		\times	\times	V	\times	>	$\langle \rangle$	\times	•		\times					•		•	/	~			•		•	\times		~		\times	V	\times			
Cryoplant & Distribution	34	•	X			\times	>		\times	•	\times	•			X		•		•	V	~		\times			×		V	V	•		V				
Coil Supply&Distribution	41	•			П	П	>		Т	•	Г			×			•		✓	V	V							V	V	4		✓		\blacksquare	\blacksquare	
H&CD Power supply	42																																			
SSEN	43	•	•	•	•	•	V	•	•	•	•	•	•	•	•				V	>	~	•	•	•	•	•	•	•	•	•	•	•	•			
Cable Trays System	44																																\times			
CODAC	45	•	٠	•	•	•	•	\rightarrow	•	•	•	•	•	•	4		1			1	1	1	٠	1	٠	X	•	1	1	1	٠	1	✓ •			
Central Interlock system	46	4	•	4	4	4		√)	•		•	4	4	4		4		4		/	4	•	4	4	•	•	4	4	4	•	\times				
Plasma Control System	47						Щ.																											Щ_	Ш	
Central Safety system	48	4				4	1		•	•		•	4	4	4		>		\checkmark	4			4	4		•	•	4	4	4	4	4	•	#		
IC H&CD system	51		•	V		V	>	•		•		•					•		V	>						×			~	•		V	~			
EC H&CD system	52		•	\times		\times	V	<i>*</i> ×		•		\times		\times			•		•	•	✓					\times		$\parallel \times$	V	•	\times	✓	\times			
Neutral Beam H&CD system			V	4		•	V	<i>,</i> 4	1	4		•	•				•		V	V	~					V		V	•	×	V	V	✓			
Lower Hybrid H&CD system	54		•	\times			>	$\langle \rangle$		•		\times					•		•	/						\times		$\parallel \times$	~	V		/	\times			
Diagnostics	55	•	•	×	V	\times	>	$\langle \rangle$	\times	•	×	\times	•	×			•		×	•	•	\times	\times	V	×			╙	•	×	×	✓	×	╨	Ш	
Test Blanket Modules Sys	56		•	\times		╙	>	$\langle \rangle$		•	╙	\times	\times		_		•		•	•	•							1	V			V	\times	╨	╨	
Port Plug Test Facility	58						╙								ш																			╨	\bot	
Site	61						V	, >		V				V	V		•		\checkmark	V	✓		\times	V	\times				×	V		\times	$\times \times$			
ReinforcedConcreteBuild	62	V	V	✓	V	V	V	•	V	V	✓	V	V	V	V		•		\checkmark	/	~	V	✓	•	V	•	V	\parallel \times			V	×	✓ ×	╨	Ш	
Steel frame buildings	63						>			~				•	V		•		✓	✓	~	•	•	\times	✓	×						×	$\times \times$			
Radiolg & Env Monitoring	64		×	\times	V			\rightarrow			\perp		\times				•		•	•	✓		\times	✓		×		1	✓				X	╨	$\perp \!\!\! \perp$	
Liquid&Gas Distribution	65	4		\times	×	4	V	_	· 🗸	4		V	4	V	V		•		\checkmark	\times	V	V	V	-0	-0	-0	-0	11 🗙	\sim	\sim			-0	Ш		
RadwasteTreatment&Storag	_		×	\times	V	\times	>	$\langle \rangle$		•	×	X	\times	_			•		\checkmark		•	V	>		Clic	k the	white c	ell on	the I							
Access Control & Security	69																	×	•				Ш.	✓ All documents are approved.												
Site Outside Platform	70																						There is at least one document to be approved.													
External Services	98																						Ц.	Х	An i	nterf	ace is io	lentifi	ed, b	ut no	doc	umer	its are g	enera'	ted.	

Challenge #4: Plant System Integration

Challenge #5: In Kind Procurement

Strategies to master it...

- Standardization
- Plant Control Design Handbook (PCDH) and associated documents
- Integrated Product Teams (IPT)
- Early delivery of CODAC Core System (mini-CODAC)
- Plant System I&C information gathering (plant profile database)
- Good interface definitions (interviews)
- Interface control documents (S-ICD), Interface Sheets (IS)
- Follow up by incremental reviewing and designing

Objectives of Plant Control Design Handbook

The Plant Control Design Handbook (PCDH) defines <u>methodology</u>, <u>standards</u>, <u>specifications</u> and <u>interfaces</u> applicable to all ITER Plant Systems Instrumentation & Control (I&C)

I&C standards are essential for ITER to

- Integrate all Plant Systems into one integrated control system
- Maintain all Plant Systems after delivery acceptance
- Contain cost by economy of scale (spare parts, expertise)

The PCDH is applicable to all Procurement Arrangements

ITER Organization (IO)

- develops,
- supports,
- maintains and
- enforces
 these standards

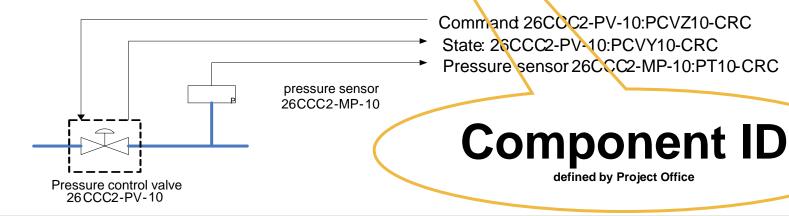
- Living document
- Latest release May 2009
- New major releases each year
- Publicly available

http://www.iter.org/org/team/chd/cid/codac/Pages/default.aspx

PV and Signal Naming Convention

For any plant system signal or plant system PV reflecting an I&C signal:

PPPPPP-TTT-NNNN: AAAA[RRRR]-SSS


For any other PV:

PPPPP = Project Breakdown Structure level 3 identifier.

TTT = Functional Category Designator (managed by DO).

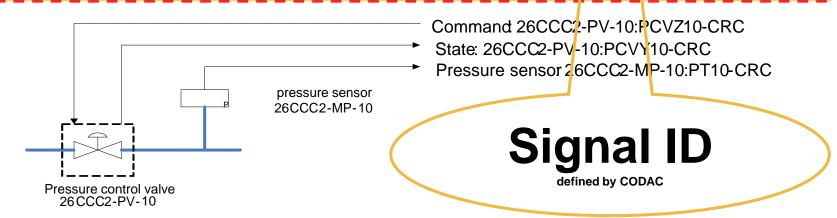
NNNN = Sequential Number (managed by DO).

PV and Signal Naming Convention

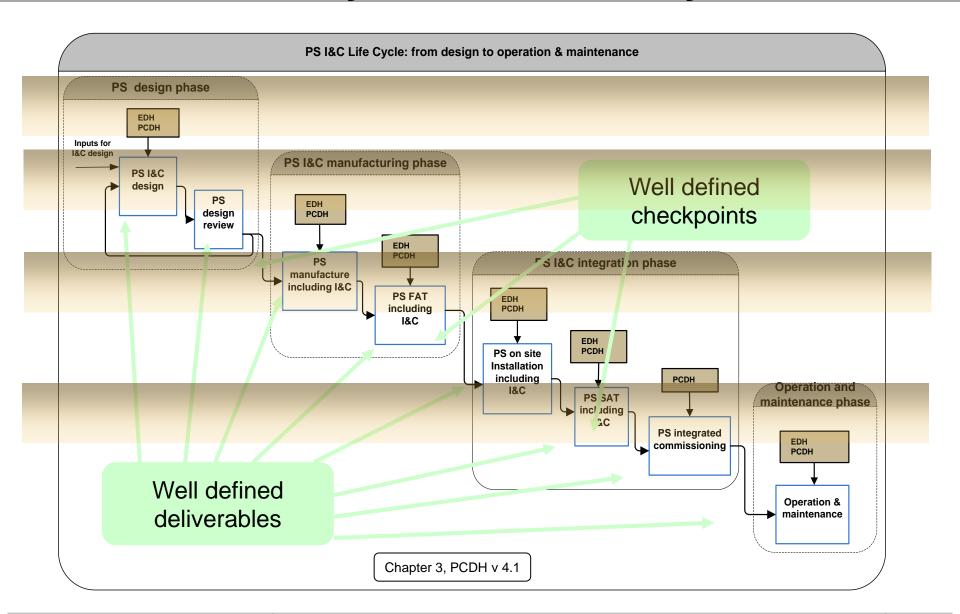
For any plant system signal or plant system PV reflecting an I&C signal:

PPPPP-TTT-NNNN: AAAA[RRRR]-SSS

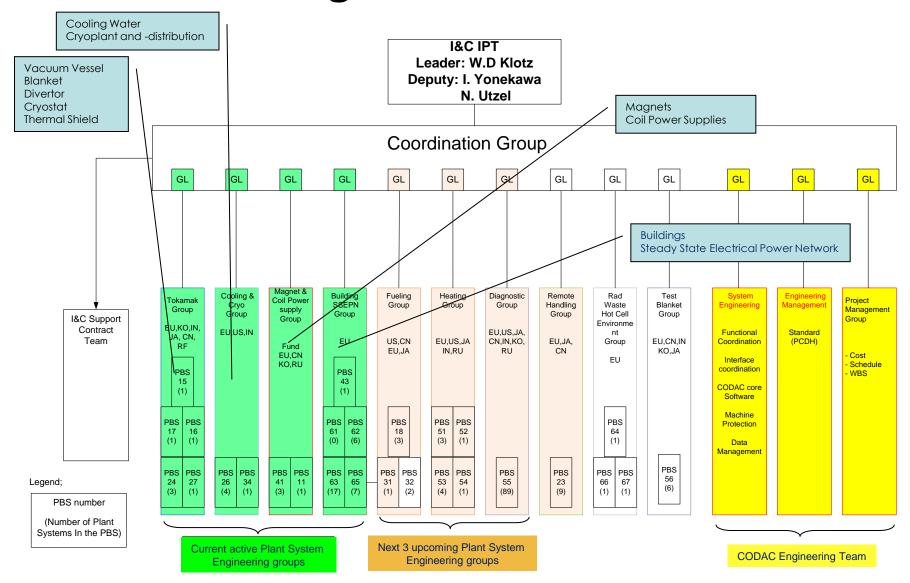
For any other PV:

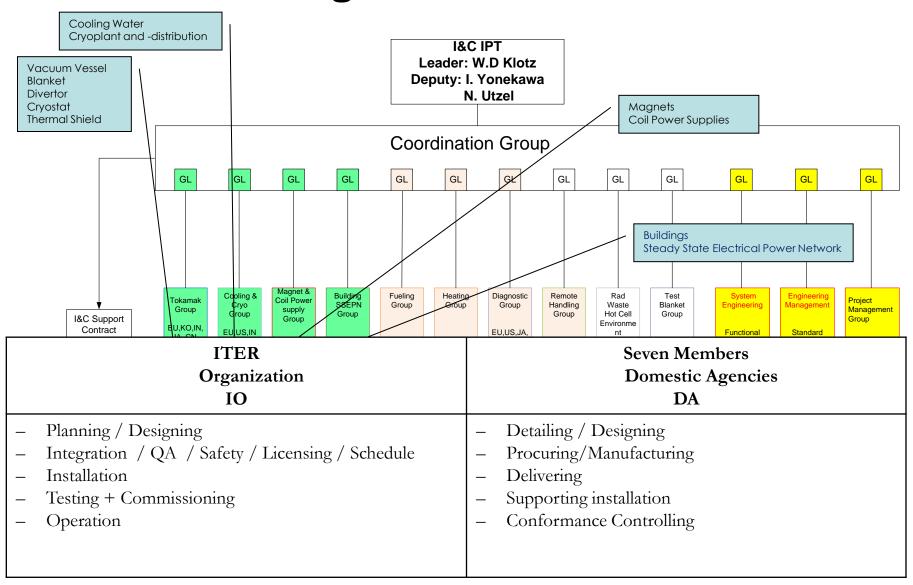


AAAA = identify sensor/actuator class using the ISA-5.1-1984 (R1992) standard for instrumentation symbols and identification.


RRRR = identify several sensors/actuators of the same class [opticnal].

SSS = identify the signal type.


FFFFFFFFFF = free identifier (length limited to 12 characters.)

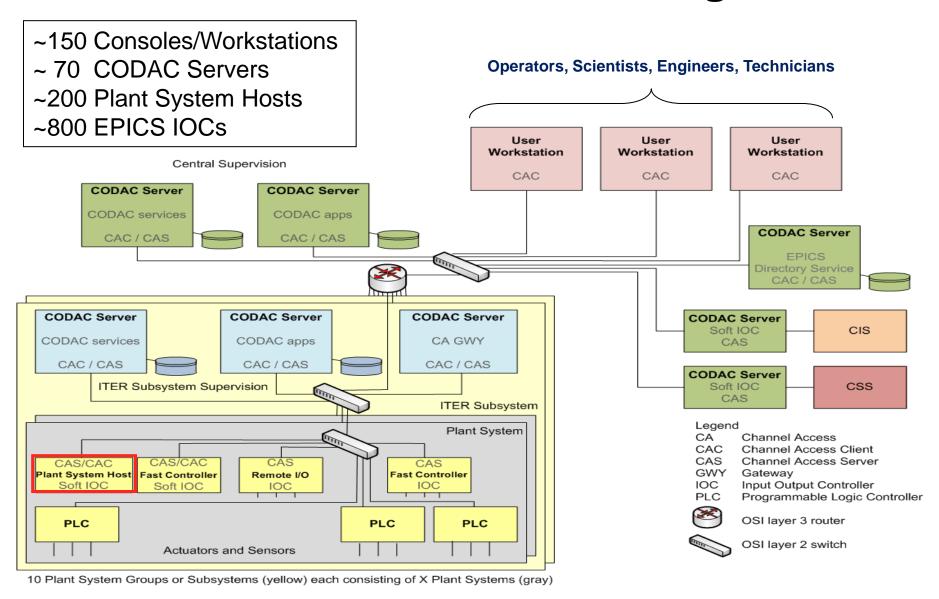

Plant System I&C Life Cycle

I&C Integrated Product Team

I&C Integrated Product Team

Synopsis

• ITER Project Quick Start


System Scope & Management Challenges

Some Current Activities

Standards Decisions Taken/Prepared

Taken	Outstanding
EPICS as middleware	Cubicle standard soon finished (single brand)
PLC equipment: Siemens S7 (industrial and SIL3)	Signal Handbook defines standard signal conditioning. (to be released this year)
Red Hat Linux as major OS	MDSplus
Application environment: Java, Eclipse, RCP, CSS	Real Time Operating System
IEEE 1588 time synchronization	Standards for High Performance Networks
COTS as much as possible	Standards for Fast Controllers (chassis based)

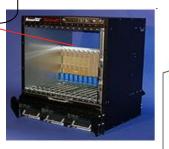
Network Architecture Design

Equipment Access

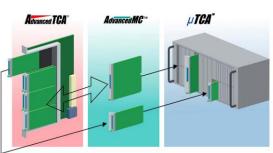
- Device Access by PLC
 - Slow control: below 10Hz
 - Siemens SP7
 - Ethernet remote IO
 - Field bus

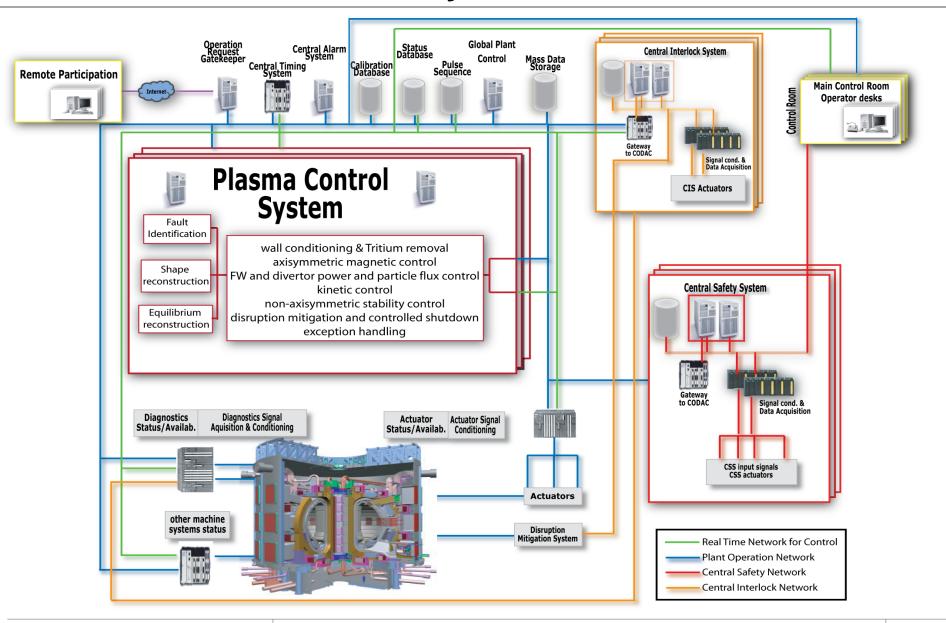
- Fast control: above 10Hz
- PCI, PXI and PCI Express
- AdvancedTCA and PCI Express
- μTCA, AMC and PCI Express
- No VME legacy technology

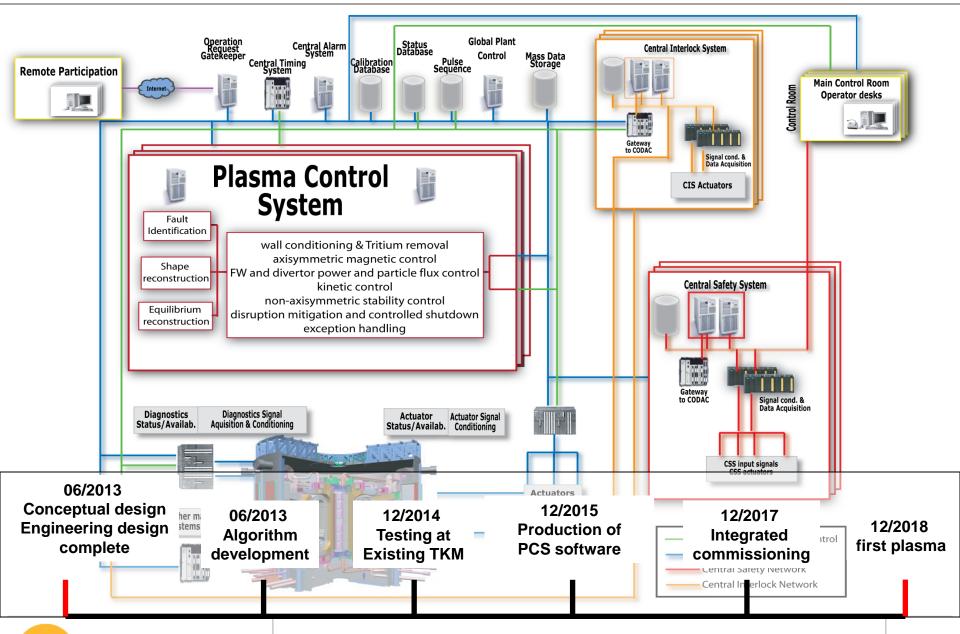
µTCA AMC carrier chassis

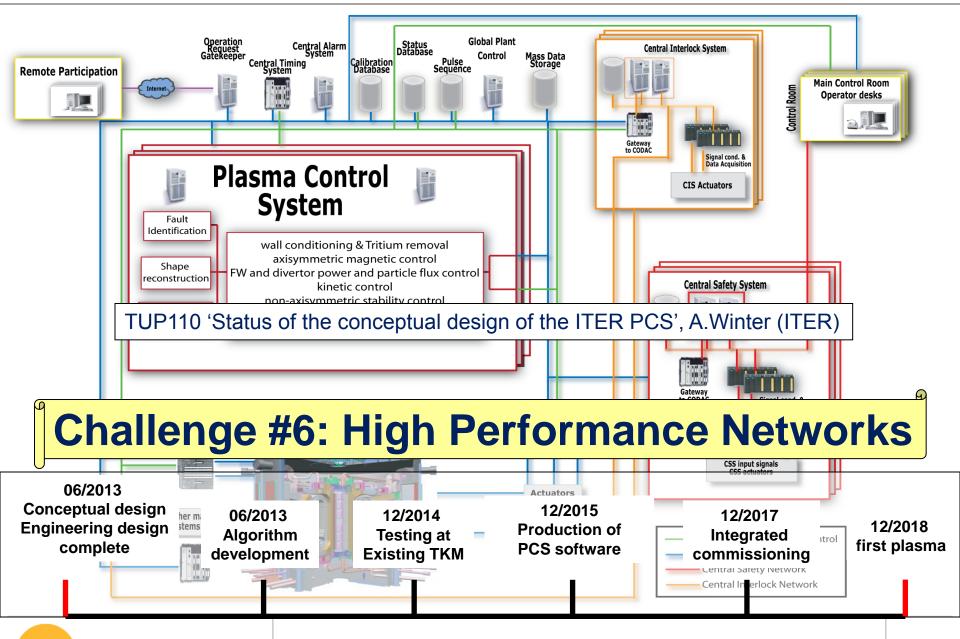

PICMG 1.0/1.1/1.3

Catalog of recommended modules




Selection to be done **case by case** Still too early




Plasma Control System within CODAC

Plasma Control System within CODAC

Plasma Control System within CODAC

_				
	Name	Requirements	Purpose	Status
	AVN Audio/Video Network	30 frames /sec -1024 x 1024 frame size 200 camera positions (with audio), 10 large display screens, 100 TV displays over ITER site	Visualization Diagnostics Surveillance	•lossless - 10GigE Vision; •lossy: H.264 •required very late2018!!
	EDN Event Distribution Network	Event latency - 10 μs	Event distribution	No use case found for 10µsec , Shall be merged with SDN
	TCN Time Communication Network	50 to 100 nsec resolution with 5% to 10% jitter	Synchronization, Trigger, Timestamp	IEEE 1588 MRF from Micro Research White Rabbit Initiative: CERN http://www.ohwr.org
	SDN Synchronous Data Bus Network	Control Loop (acquisition, transfer, calculation, actuator): •0.5 to 100 msec with 1% jitter @ payload 20 to 40 Mbytes/sec •10 to 100 µs with very low payload	Plasma Feedback Control	UDP-based/switched fabric networks Reflective (Shared) Memory Network De-facto standard PCI-express as local computer bus interface could bridge the time gap to the next years Specify:
	Plasma Control System requires deterministic, quasi real-time communication and time synchronization between distributed nodes			 that all computer systems (also in plant systems) need one or more PCEe x 16 slots to hold any communication network card that any network solution must have PCIe computer interface dealy, if possible, the concrete network solution by some years.

	<u> </u>		
Name	Requirements	Purpose	Status
AVN Audio/Video Network	30 frames /sec -1024 x 1024 frame size 200 camera positions (with audio), 10 large display screens, 100 TV displays over ITER site	Visualization Diagnostics Surveillance	•lossless - 10GigE Vision; •lossy: H.264 •required very late2018!!
EDN Event Distribution Network	Event latency - 10 μs	Event distribution	No use case found for 10µsec , Shall be merged with SDN
TCN Time Communication Network	50 to 100 nsec resolution with 5% to 10% jitter	Synchronization, Trigger, Timestamp	IEEE 1588 MRF from Micro Research White Rabbit Initiative: CERN http://www.ohwr.org
SDN Synchronous Data Bus Network	Control Loop (acquisition, transfer, calculation, actuator): •0.5 to 100 msec with 1% jitter @ payload 20 to 40 Mbytes/sec •10 to 100 µs with very low payload	Plasma Feedback Control	UDP-based/switched fabric networks Reflective (Shared) Memory Network De-facto standard PCI-express as local computer bus interface could bridge the time gap to the next years Specify:
quasi <u>real-time con</u>	stem requires <u>determinmunication</u> and <u>time</u> tween distributed nod		 that all computer systems (also in plant systems) need one or more PCEe x 16 slots to hold any communication network card that any network solution must have PCIe computer interface dealy, if possible, the concrete network solution by some years.

Name	Requirements	Purpose	Status
AVN Audio/Video Network	30 frames /sec -1024 x 1024 frame size 200 camera positions (with audio), 10 large display screens, 100 TV displays over ITER site	Visualization Diagnostics Surveillance	•lossless - 10GigE Vision; •lossy: H.264 •required very late2018!!
EDN Event Distribution Network	Event latency - 10 μs	Event distribution	No use case found for 10µsec , Shall be merged with SDN
TCN Time Communication Network	50 to 100 nsec resolution with 5% to 10% jitter	Synchronization, Trigger, Timestamp	IEEE 1588 MRF from Micro Research White Rabbit Initiative: CERN http://www.ohwr.org
SDN Synchronous Data Bus Network	Control Loop (acquisition, transfer, calculation, actuator): •0.5 to 100 msec with 1% jitter @ payload 20 to 40 Mbytes/sec •10 to 100 µs with very low payload	Plasma Feedback Control	UDP-based/switched fabric networks Reflective (Shared) Memory Network De-facto standard PCI-express as local computer bus interface could bridge the time gap to the next years Specify: that all computer systems (also in plant)
quasi <u>real-time con</u>	stem requires <u>determinmunication</u> and <u>time</u> tween distributed nod		 that all computer systems (also in plant systems) need one or more PCEe x 16 slots to hold any communication network card that any network solution must have PCIe computer interface dealy, if possible, the concrete network solution by some years.

Name	Requirements	Purpose	Status
AVN Audio/Video Network	30 frames /sec -1024 x 1024 frame size 200 camera positions (with audio), 10 large display screens, 100 TV displays over ITER site	Visualization Diagnostics Surveillance	•lossless - 10GigE Vision; •lossy: H.264 •required very late2018!!
EDN Event Distribution Network	Event latency - 10 μs	Event distribution	No use case found for 10µsec , Shall be merged with SDN
TCN Time Communication Network	50 to 100 nsec resolution with 5% to 10% jitter	Synchronization, Trigger, Timestamp	IEEE 1588 MRF from Micro Research White Rabbit Initiative: CERN http://www.ohwr.org
SDN Synchronous Data Bus Network	Control Loop (acquisition, transfer, calculation, actuator): •0.5 to 100 msec with 1% jitter @ payload 20 to 40 Mbytes/sec •10 to 100 µs with very low payload	Plasma Feedback Control	UDP-based/switched fabric networks Reflective (Shared) Memory Network De-facto standard PCI-express as local computer bus interface could bridge the time gap to the next years Specify: that all computer systems (class in plant)
Plasma Control System requires <u>deterministic</u> , quasi <u>real-time communication</u> and <u>time</u> <u>synchronization</u> between distributed nodes		 •that all computer systems (also in plant systems) need one or more PCEe x 16 slots to hold any communication network card •that any network solution must have PCIe computer interface •dealy, if possible, the concrete network solution by some years. 	

CODAC Core Systems and mini-CODAC

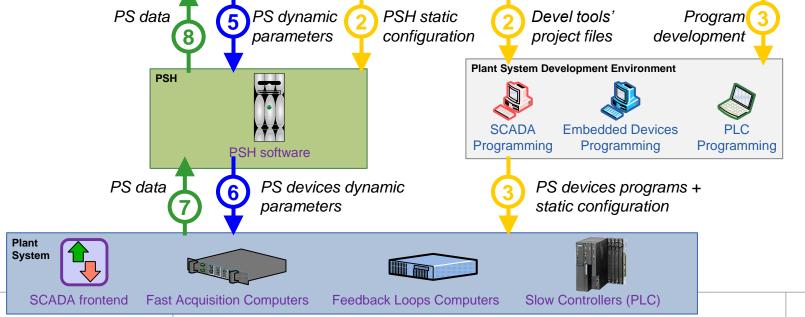
CODAC Core Systems will be a well defined product to be exported to all Plant System I&C developers.

CODAC Core Systems will comprise some hardware and all software required to develop, interface and test plant systems I&C.

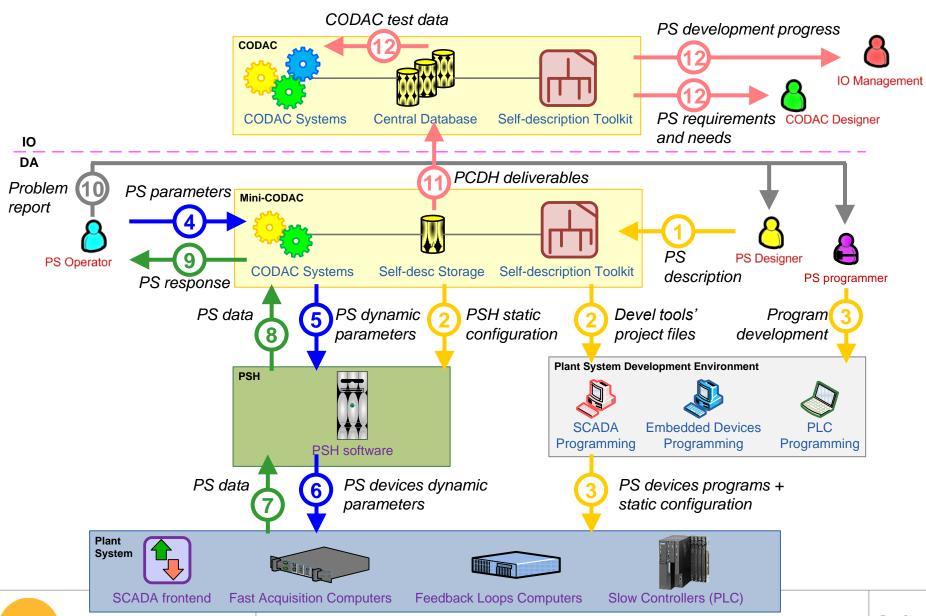
mini-CODAC will be a lightweight subset of CODAC Core Systems.

mini-CODAC will be a portable SCADA system based on EPICS and Open Software tools.

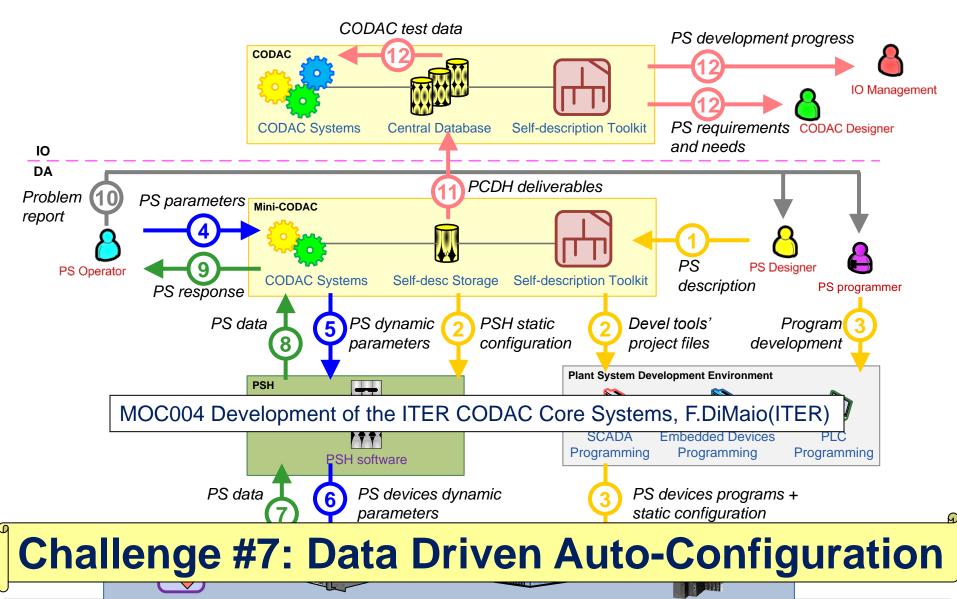
CODAC Core Systems software comprises communication middleware (EPICS, IOC,...), plant system self-description -schemas and -tools plus SCADA functionalities.


CODAC Core Systems will be released on a yearly basis with the first release planned for February 18, 2010.

MOC004 Development of the ITER CODAC Core Systems, F.DiMaio(ITER)

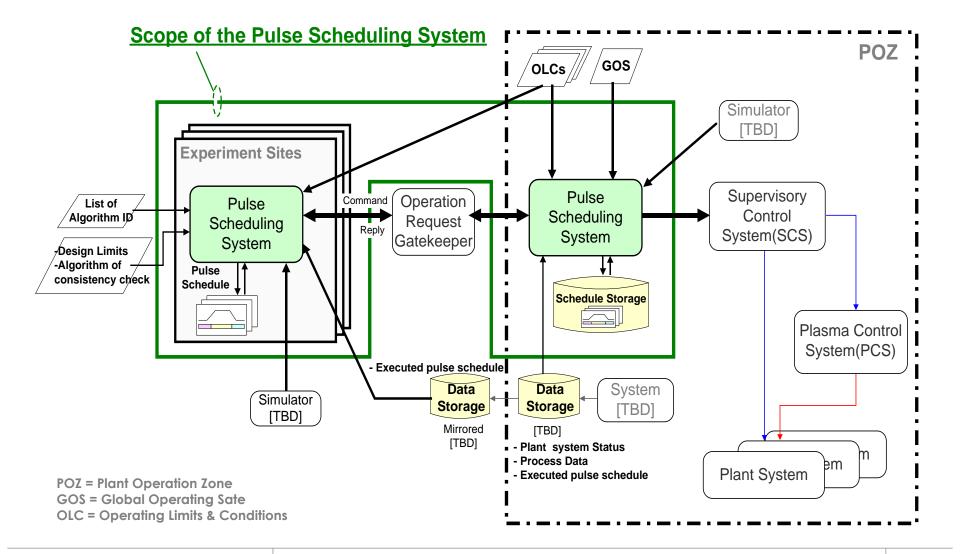

Plant System Self-Description

A concept of providing all the necessary information about Plant Systems along with the Plant Systems themselves. The ultimate goal is to make both Plant Systems I&C and CODAC software system-neutral, decreasing hard-coding of system specifics and increasing software configuration by external data.


Self-description will be based on state-of-the-art XML tools and technologies.

Plant System Self-Description

Plant System Self-Description



SCADA frontend **Fast Acquisition Computers** Feedback Loops Computers

Slow Controllers (PLC)

Pulse Scheduling Requirements Analysis

Pulse Scheduling Data Flow

Contracts to come soon

Contract Number	Description	WBS
NEW	* CODAC Engineering Support (A Wallander)	4.5
NEW	* I&S Engineering Support (L Scibile)	4.6
D-10-005	Consulting for CODAC standard software/hardware environment	4.5
D-10-006	Design, Implement, Supply and Integrate Fast Plant System	4.5
D-10-007	Prototype Monitoring and supervising CODAC	4.5
D-10-008	Supply mini CODAC application layer modules	4.5
D-10-009	Prototype plasma control system architecture	4.5
D-10-010	Software QA support. Tools and procedure for requirement tracking, documentation, versioning, testing, packaging, configuration control etc. (A Wallander)	4.5
D-10-011	Develop tools to support self-description (D Stepanov)	4.5
D-10-012	Design High Performance Networks	4.5
D-10-013	Design scientific data streaming	4.5
D-10-015	Evaluate highly available interlock architectures	4.5
D-10-016	Technology Integration Support	4.5
D-10-017	Assistance Contract for CODAC, Interlock and Safety - extension of CT/2009/1206 L Scibile	4.6
D-10-019	Cooperation Agrement CERN machine protection	4.6
D-10-020	Analysis of fault scenarios for machine protection	4.5
D-10-022	Development equipment for CIS	4.6
D-10-023	Engineering models for plasma feedback control and protection	4.6
D-10-024	Prototype Integration of Pulse Execution System	4.5
D-10-025	Prototype evaluation of I&C safety system architecture	4.6
NEW	CODAC Tasks orders against Framework CT Engineering & Technical Support	4.5

Contracts to come soon

Contract Number	Description	WBS
NEW	* CODAC Engineering Support (A Wallander)	4.5
NEW	* I&S Engineering Support (L Scibile)	4.6
D-10-005	Consulting for CODAC standard software/hardware environment	4.5
D-10-006	Design, Implement, Supply and Integrate Fast Plant System	4.5
D-10-007	Prototype Monitoring and supervising CODAC	4.5
D-10-008	Supply mini CODAC application layer modules	4.5
D-10-009	Prototype plasma control system architecture	4.5
D-10-010	Software QA support. Tools and procedure for requirement tracking, documentation, versioning, testing, packaging, configuration control etc. (A Wallander)	4.5
D-10-011	Develop tools to support self-description (D Stepanov)	4.5
D-10-012	Design High Performance Networks	4.5
D-10-013	Design scientific data streaming	4.5
D-10-015	Evaluate highly available interlock architectures	4.5
D-10-016	Technology Integration Support	4.5
D-10-017	Assistance Contract for CODAC, Interlock and Safety - extension of CT/2009/1206 L Scibile	4.6
D-10-019	Cooperation Agrement CERN machine protection	4.6
D-10-020	Analysis of fault scenarios for machine protection	4.5
D-10-022	Development equipment for CIS	4.6
D-10-023	Engineering models for plasma feedback control and protection	4.6

Challenge #8: Heavy Contract Management

NEW CODAC Tasks orders against Framework CT Engineering & Technical Support

Example MCR Building Conceptual Design

