TUC  —  Hardware Technology   (13-Oct-09   13:40—15:00)

Paper Title Page
TUC001 Commissioning of the ATLAS Pixel Detector with Cosmics Data 81
 
  • F. Hirsch
    UNIDO, Dortmund
 
  The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. Approximately 80 M electronic channels of the detector, made of silicon, allow to detect particle tracks and secondary vertices with very high precision. After connection of cooling and services and verification of their operation the ATLAS Pixel Detector is now in the final stage of its commissioning phase. Prior to the first beams expected in Summer 2009, a full characterization of the detector is performed. Calibrations of optical connections, verification of the analog performance and special DAQ runs for noise studies are ongoing. Combined operation with other subdetectors in ATLAS allows to qualify the detector with physics data from cosmic muons. The talk will show all aspects of detector operation, including the monitoring and safety system, the DAQ system and calibration procedures. The summary of calibration tests on the whole detector as well as analysis of physics runs with cosmics data will be presented.  
TUC002 Recent Progress of RF and Timing System of XFEL/SPring-8 85
 
  • H. Maesaka, T. Fukui, N. Hosoda, S. Matsubara, T. Ohshima, Y. Otake
    RIKEN/SPring-8, Hyogo
  • M. Musha
    University of electro-communications, Tokyo
  • K. Tamasaku
    RIKEN Spring-8 Harima, Hyogo
 
  For the XFEL facility at SPring-8, the acceleration rf is demanded to be transmitted for a long distance (~1km) and to be precisely controlled. The amplitude precision is 0.01 % and the phase precision is 0.1 degree of a 5712 MHz rf (50 fs timing accuracy). Therefore, we designed a stable optical timing and rf distribution system and a precise low-level rf control system. For the optical system, we employed a phase-stabilized optical fiber (PSOF) that has a very small temperature coefficient of 2 ppm/K. In addition, the fiber length is monitored by an optical interferometer and regulated by a variable delay line to reduce a remaining drift of PSOF. For the low-level rf system, we use an IQ modulator (demodulator) to generate (to detect) an acceleration rf signal. The baseband signals of the IQ modulator and demodulator are processed by 238MHz VME D/A and A/D converter boards, which have 14-bit and 12-bit resolutions, respectively. This system can manipulate the rf amplitude and phase with 0.01 % and 0.1 degree precision, respectively. These highly accurate instruments are very useful to other facilities.  
slides icon Slides  
TUC003 Development of COM Express VME Carrier Board with Remote Management Capability 90
 
  • T. Masuda, T. Ohata
    JASRI/SPring-8, Hyogo-ken
 
  VME market is shrinking gradually. We have recently faced with difficulty that our choice of VME CPU boards from the market has been restricted. Since over two hundreds of VME computers have been deployed, we have to solve the difficulty. We, therefore, design and develop a COM Express VME carrier board. It is equipped with the VME64x interface and the PICMG standardized COM Express interface. We can build up our VME CPU board by combining the carrier board with a suitable COM in the growing COM Express market. We design the carrier board to realize another solution for the difficulty. That is, the VMEbus can be controlled from its PMC/XMC slot without using a COM Express module. High-reliable server computer would be a VME controller via a PCI or PCI Express extension like Serial Rapid I/O, for example. In addition, we design the carrier board to support remote management functions. The daughter board attached onto the carrier will provide VME/COM monitoring function, VMEbus reset function and KVM (keyboard, video, mouse) over IP function via an independent network interface on the carrier. The design details and the available functions will be presented.  
TUC004 The White Rabbit Project 93
 
  • J. Serrano, P. Alvarez, M. Cattin, E. G. Cota, J. H. Lewis, P. M. Oliveira Fernandes Moreira, T. Wlostowski
    CERN, Geneva
  • R. Baer, T. Fleck, M. Kreider, C. Prados, S. Rauch
    GSI, Darmstadt
  • J. Dedic
    Cosylab, Ljubljana
  • G. Gaderer, P. Loschmidt
    Austrian Academy of Sciences, Wien
 
  Reliable, fast and deterministic transmission of control information in a network is a need for many distributed systems. One example is timing systems, where a reference frequency is used to accurately schedule time-critical messages. The White Rabbit (WR) project is a multi-laboratory and multi-company effort to bring together the best of the data transfer and timing worlds in a completely open design. It takes advantage of the latest developments for improving timing over Ethernet, such as IEEE 1588 (Precision Time Protocol) and Synchronous Ethernet. The presented approach aims for a general purpose, fieldbus-like transmission system, which provides deterministic data and timing (sub-ns accuracy and ps jitter) to around 1000 stations. It automatically compensates for fiber lengths in the order of 10 km. This paper describes the WR design goals and the specification used for the project. It goes on to describe the central component of the WR system structure - the WR switch - with theoretical considerations about the requirements. Finally, it presents real timing measurements for the first prototypes of WR hardware.