
WEAT002
physics/0111060

RE-ENGINEERING OF THE GSI CONTROL SYSTEM

U. Krause, V. RW Schaa, GSI, Darmstadt, Germany

Abstract

After more than 12 years of operation without substantial
revision a modernization of the control system at GSI is
overdue. A strategy to adapt the system to future needs is
outlined. The system has to support a specific environment
of which the main features are described. More flexibility
than in the current system can be achieved while still using
many parts of the actual system.

1 INTRODUCTION

The actual GSI control system started operation in 1989.
Many extensions and refinements have been developed
since but no substantial revision could be made. As a re-
sult the system is outdated in many aspects. Only one en-
vironment is supported, one fieldbus, one type of device
controller, one operating system for the applications. Hard-
ware is no longer available, (e.g. the controller boards from
1990), and support for Pascal as a programming language
for the device control software ended.

Most components were developed to inhouse standards.
Interfaces between components are too complex. There-
fore, exchange of single components is costly. A general
revision is overdue. The modernization has to consider the
characteristics of the GSI environment.

2 CONTROL ENVIRONMENT

2.1 GSI Accelerator Operation

GSI operates three accelerators for all kind of ions from
hydrogen to uranium: The linear accelerator Unilac, the
synchrotron SIS and the storage ring ESR. The linac and
synchrotron are operated in a pulse to pulse time sharing
mode with a repetition rate of 50 Hz of the linac and 0.1
to 0.5 Hz of the synchrotron. Switching to different ion
species, energies, and experimental targets is done with this
rate. Three independent ion sources serve in parallel, typi-
cally five experiments at Unilac, SIS and ESR. The average
duration of an experiment is one week.

In addition to this flexible experimental operation, a rigid
mode for heavy ion cancer therapy is provided [1]: Any
carbon beam from a fixed set of 254 energies, 15 intensities,
and 7 spot sizes will be delivered to the irradiation place by
request.

2.2 Device Handling

Pulse to pulse switching demands a more complex device
handling than simple schemes like ‘set reference’, and ‘read
actual value’. This can be illustrated with magnets in Unilac
cycles for low-charged ions. One controller has to service
up to 12 magnets in 20 ms cycles. Preset time has to be max-
imized to reach high currents, and stable current duration
has to be limited to reduce thermal load.

Broadcasting a medium level set value at the start of a cy-
cle gives slow devices time to reach full current. To avoid
overheating of fast devices, the dedicated set value is de-
layed for 4 ms. After the end of beam, all magnets have to
be set to a zero value. The duration of stable currents is too
short to read actual values directly. So ‘sample and holds’
are triggered for read-out. The controller cannot read these
values until the following cycle after reference values have
been set.

2.3 Device Realization

In most cases, the devices connected to the control system
are rather complex. Some components are implemented as
distinct parts like the extraction kicker with 28 modules.
On the other hand, some hardware components host several
devices, e.g. profile grids. Up to 16 grids are distributed on
8 channels in one measuring device. Multiplexing restricts
measurement to one channel per cycle. Nevertheless, the
variety of different implementations has to be presented in
a comprehensive way to the operation crew. Grids have to
appear as independent devices and the kicker modules have
to be combined to one kicker.

3 ACTUAL CONTROL SYSTEM

3.1 Scheme of the control system

The hardware outline of the actual control system [2] is
given in Figure 1. The diagram also reflects the logical
view since each module is rigidly connected to one of the
hardware levels.

All devices are linked via field bus (modified MIL 1553)
to distributed equipment controllers (EC). Synchronized op-
eration is achieved by triggers from programmable central
timing units, one for each accelerator. Supervisory con-
trollers (SC) handle interaction with the operation level.
One SC serves up to nine ECs.

Communication between EC and SC is done by dual
ported RAM on the EC. SCs and workstations communicate

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

219

SC

trigger

loggingdatabase
configuration

SC

 dev data

EC

16 x 255 triggers

Timing

 dev data dev data

ECEC

dev b1

dev b2dev a2

dev a1

ethernet

Figure 1: Schematic view of the actual control system

via ethernet by an in-house protocol comparable to UDP/IP.
VME boards with 68020 processors are used for ECs and
SCs. Operation level workstations run OpenVMS.

3.2 Real-Time Control

The real-time level is the most substantial part of the GSI
control system. Device interactions are triggered by signals
from central timing units. Up to 255 different triggers allow
flexible adaption to the accelerating process.

ECs run autonomously under control of the timing unit
after device data have been supplied. Up to 16 different
sets of data, called virtual accelerators, may be configured
in parallel on the ECs. This enables pulse to pulse switching
between as many different beams. Beams for cancer therapy
are handled analogously [1].

The sequence of virtual accelerators is determined online
by the timing units: Beam is produced only on request by
the experimental area.

Execution of commands from the operation level is pro-
vided. Device interrupts and polling services for survey of
the devices are supported.

3.3 Device Representation

The devices are represented in an object oriented manner
as independent units even though the control system was
developed in a procedural way. Unique device names, the
so-called nomenclatures, facilitate addressing. Every prop-
erty is modelled by an action, coded as a procedure on the
SC, with data to be exchanged, e.g. sending a reference or
reading an actual value. Properties are identified by name
and described in a formalized way by type and count of
corresponding data. Based on this description, one single
interface allows access to every property of every device.

To keep applications well structured, nomenclatures rep-
resent independent objects with relevance for the process
of acceleration. These logical devices are constituted on
the real-time level: Every nomenclature must have a corre-
sponding entry on the EC. Mapping of the connected hard-
ware to the operations view is demanded.

4 UPGRADES

4.1 Strategy

Replacement of the control system by a different one would
require a lot of effort. Existing devices and interfaces must
be supported, the achieved quality of accelerator operation
has to be provided, and existing control hardware has to be
used further in order to reduce expenses.

Actually 2750 devices are controlled by 256 ECs in 41
VME crates. Device specific adaptions can be subsumed
in 61 classes, each requiring its own handling. Implemen-
tation of device adaptions requires 145,000 lines of code
(LOC) compared to 26,000 LOC for common system soft-
ware. The effort needed to reimplement peculiarities could
be seen when a functional prototype of the Unilac timing
unit was rebuild. Although it provided less functionality
than is implemented today, and work was done within the
same environment, it took about one person year.

Fortunately the architecture of the existing control system
is still up to date. Stepwise migration to a system similar to
the actual one but providing greater flexibility is managable.
This will result in an up-to-date system and will allow re-use
of most spent investments.

4.2 Outline of the Future Control System

The outline of the proposed future control system is shown
in Figure 2. It is still a three level approach: Device control
engines, device representation by logical devices, and the
application level. Different from Figure 1, it is a logical
view. Components can be installed on every hardware level
of the control system.

A4
G3

archiving

A3

a4

A2 G2

trending

M2

a3 m2a2 m1

G1

dev g

M1

database
configuration

g

log dev
Grid
log dev

Magnet

dev s1

dev a4

Emittancelogging

t

Timing

a1

SubX

log dev

dev a1

dev a2

T

dev a3

A1

E

Actuator
log devlog dev

S

dev s2
dev m1

log
dev

dev m2

communication middleware (CORBA)

control
asynchr.

timing
synchr.

control
asynchr.sub-

system controlcontrol
synchr.

trigger

Figure 2: Schematic view of the future control system

4.3 Synchronized Device Control

Strong point in the existing control system is the real-time
device control. It proved to be very well adapted to the
needs of flexible pulse to pulse operation of the GSI accel-
erators. Therefore, the same mechanism will be used in the

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

220

future. This allows utilization of the existing generation and
delivery of triggers for device synchronization.

Actions to service devices autonomously, under control
of the timing system, are realized in synchronous device
control engines. The actual EC software can serve as a first
version of these engines. Fortunately, most of the effort to
implement device specific adaptions was on the EC, both in
size and complexity.

4.4 Extensions for the Device Control Level

In many cases a synchronization with the accelerating cycle
is not needed, e.g. for slow mechanical actuators. An asyn-
chronous device control engine will be provided by reduc-
ing a synchronous engine to polling and service of device
interrupts.

Real-time systems are difficult to survey and to debug. To
keep the control engines simple, any mapping between the
hardware and the process view should be avoided here, e.g.
the electronics for profile grids should be handled as one
unit. Consequent reduction to the kernel functionality often
allows description of device characteristics by simple tables.
These devices can then be handled by common software.

In the current EC software, the hardware dependent parts
of the code have to be identified to make the control engines
portable. Implementation will be possible on any computer
in the control system, on dedicated device controllers and
on multi purpose computers. Nevertheless, if good real-
time performance is needed computers with a hard real-time
system will be used.

4.5 Device Modelling Level

An object oriented approach suggests representation of con-
nected hardware as objects, called logical devices. Device
functionality in the sense of the actual control system then
corresponds to methods of the logical device.

Dealing with various device specific methods can be con-
fusing. Therefore every logical device will have a common
method as interface. Variable data formats can be exchanged
by using types like CORBA’s any. In IDL notation this
method may look in principle like

void access(in string property, inout any data)

raises (ControlException);
Logical devices are suitable locations to map the accel-

erator hardware to a process oriented structure. Different
abstraction levels can be build by cascading, e.g. magnets
and profile grids can be combined to emittance measure-
ment devices. Any unit can be integrated as a logical device
at this level: Complete subsystems like SCADA systems,
devices with an OPC interface, or even software objects like
databases.

A scheme for the logical devices has to be developed
which is more general than in the actual system. Effort for
implementation of device specific adaptions can be reduced
by integrating code from the existing system. Procedures
corresponding to properties can be transformed to objects’
methods. Header and exit part of the procedures have to be

replaced but the body can be kept with slight modifications.
This allows a fast integration of the existing implementa-
tions but of course can only be a first step. Modern software
development techniques allow much more elegant solutions
compared to realisations in the actual system.

4.6 Networking

Communication with logical devices, distributed objects, is
straightforward. Common middleware, like CORBA based
systems, supports all needs of accelerator operation. Nam-
ing services, or alternatively explicit handling of object ref-
erences, allow addressing of logical devices by name.

4.7 Application Level

No detailed investigations have been made yet. OpenVMS
and Unix are based on similar concepts. This suggests the
use of Linux as future basis for the application level.

In a transitional period, both operation systems have to
be supported in parallel. To allow further usage of existing
applications, the current interface for device access has to
be provided in the future.

4.8 Preparatory Work

The device control software was written in Pascal. Actual
software development systems are now based on C++. To
enable future usage of existing software, conversion of the
code to C has started [3].

Substantial changes of the actual system can easily impact
the ongoing accelerator operation. To limit the implications
of modifications, the modularization has to be enhanced. In
a re-engineering process each module in the control sys-
tem has to be provided with structured interfaces to reduce
coupling. Only after this, will it be possible to replace exist-
ing components or port components to other platforms with
acceptable effort.

5 CONCLUSION

The paper outlines a strategy for a rejuvenation of the ex-
isting control system. It shows the possibility to enhance
flexibility and capacity of the system and nevertheless to
integrate many parts of the existing system. The modern-
ized control system will be suitable for the proposed new
accelerator facilities too.

6 REFERENCES

[1] U. Krause, R. Steiner, “Adaption of a Synchrotron Con-
trol System for Heavy Ion Tumor Therapy”, Proceedings of
ICALEPCS ’95, Chicago, USA, 1995.

[2] U. Krause, V. Schaa, R. Steiner, “The GSI Control System”,
Proceedings of ICALEPCS ’91, Tsukuba, Japan, 1991.

[3] L. Hechler, “Converting Equipment Control Software from
Pascal to C/C++”, these proceedings.

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

221

