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Abstract 
The strategy used to develop the NIF Integrated 

Computer Control System (ICCS) calls for incremental 
cycles of construction and formal test to deliver a total 
of 1 million lines of code. Each incremental release 
takes four to six months to implement specific 
functionality and culminates when offline tests 
conducted in the ICCS Integration and Test Facility 
verify functional, performance, and interface 
requirements. Tests are then repeated on line to confirm 
integrated operation in dedicated laser laboratories or 
ultimately in the NIF. Test incidents along with other 
change requests are recorded and tracked to closure by 
the software change control board (SCCB). Annual 
independent audits advise management on software 
process improvements. Extensive experience has been 
gained by integrating controls in the prototype laser 
preamplifier laboratory. The control system installed in 
the preamplifier lab contains five of the ten planned 
supervisory subsystems and seven of sixteen planned 
front-end processors (FEPs). Beam alignment, timing, 
diagnosis and laser pulse amplification up to 20 joules 
was tested through an automated series of shots. Other 
laboratories have provided integrated testing of six 
additional FEPs. Process measurements including 
earned-value, product size, and defect densities provide 
software project controls and generate confidence that 
the control system will be successfully deployed. 

1 INTRODUCTION 
The Integrated Computer Control System (ICCS) 

software for NIF is being constructed by an iterative 
process that implements and tests specific functional 
increments as required by project management. 
Planned overlap between cycles of development allows 
management to level the effort of design and review, 
implementation, and test activities to utilize staff 
efficiently. Performance measures taken during each 
cycle show progress toward completion. Each 
increment is first tested in the ICCS testbed. Presently, 
this is followed by testing in the appropriate prototype 
laboratories. 

2 ITERATIVE DEVELOPMENT CYCLES 
Each planning cycle begins by identifying which 

requirements will be implemented for the increment. 
ICCS managers review project needs and select from 
the integrated project requirements documents those 
functions appropriate for the next development cycle. 
Availability of testbed resources, project risk resolution 
and prospects for integration with laboratory equipment 
influence the selection of requirements that are 
included. 

The product of the requirements phase is an 
implementation plan: a document that defines the 
requirements, the changes that have been accepted into 
the software change request database, new features on 
the user interface, and dependencies on other 
subsystems. The implementation plan also establishes 
the schedule for the increment and defines which of the 
ICCS subsystems [1] will be deployed at the end of the 
increment. Earned value accounting allocates value for 
the product of each engineering phase, so the value 
accrues steadily through the construction of the 
increment. 

Detailed design work on the increment’s components 
begins when the implementation plan is complete. A 
review of software designs precedes implementation. 
Each of the subsystems in a deployment is reviewed 
prior to code implementation, with reviewers’ action 
items tracked to closure. Included in the documentation 
presented in a review are Unified Modeling Language 
representations of the software classes to be built, 
interface definition language interfaces for CORBA-
distributed objects, schemae for database tables, Buhr 
diagrams [2] showing concurrency, and user interface 
sketches.  

Implementation and unit test are accomplished using 
an integrated development environment that 
incorporates version control and change management 
with the Ada compiler and the Java development suite.  

When the several interacting programs that constitute 
a testable product release are completed, integration 
and deployment is performed by the configuration 
management team, independent of the implementers. 
The configuration manager performs quality control 
verification by witnessing compliance with the 
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implementation plan. Requested software changes that 
were completed are documented via the change control 
database. The source code is stabilized by the version 
control tool. All versions are confirmed to be 
consistent, and the build process is repeated under 
configuration control. Completeness is confirmed by 
executing a set of integration tests that confirm 
interface consistency of all the communicating 
processes. The entire deployment is copied to the test 
environment and turned over to the test team. 

3 TEST PLANNING AND EXECUTION 
The test team’s responsibility is to confirm that the 

delivered software correctly and robustly implements 
the requirements established for the increment. The 
testers design, execute, and document the results of 
extensive tests. Test plans and test procedures are 
written starting with the requirements, and accepted 
changes are documented in the implementation plan.  

One or more tests are conducted for each 
deployment, with each test typically encompassing 
numerous test cases. For requirements traceability, test 
procedures identify the requirements being verified and 
the relevant procedural steps. Test procedures are 
redlined as required during test execution to provide an 
accurate basis for test expansion for subsequent 
deployments as well as regression testing. 

Tests are conducted “offline” in a dedicated 
Integration and Test (I&T) facility, where 
representative laser hardware is available for extensive 
testing. In the I&T facility, the software can be 
exercised at the limits of its capabilities and error cases 
introduced to assure robustness. Testers also draft 
operations manuals and oversee preparation of 
configuration database instances that support activities 
in the I&T facility and in laser hardware prototyping 
laboratories. 

Fully integrated deployments can be tested online in 
a laser laboratory. During both offline and online 
testing, incidents of noncompliance are recorded and 
analyzed for trends. Some tests expose defects in 
software: erroneous requirements, functional errors, 
errors of omission, and regressive failures are tracked. 
Software change requests are entered and managed by 
the SCCB. Hardware defects are documented and 
tracked using a similar process. 

So far, over 650 test incidents have been 
documented; about three-quarters of these are software 
issues that result in software change requests (SCRs). 
Defects that prevent completion of critical testing or 
operations are classified as urgent and are repaired by 
the development team as quickly as possible. A patch 
to the deployment is then issued to fix the problem, and 
regression tests are performed. Software defect density 
to date has been approximately 2 functional defects per 

1000 lines of code. The success rate for repaired 
defects is approximately 90%. New defects have been 
introduced in less than 10% of the patches. 

4 OVERLAP OF SUCCESSIVE 
INCREMENTS 

The foundation subsystems – the frameworks and the 
support layers where commercial off-the-shelf products 
are installed – lead application development by half a 
phase. The benefit of this tactic is that new framework 
functionality is specified ahead of need. Framework 
requirements are defined immediately after the 
application subsystems have completed their design 
reviews (in the preceding cycle), and the 
implementation of framework enhancements occurs 
while the succeeding application systems are being 
specified and designed. This tactic delivers (partially) 
tested frameworks to application developers just as they 
begin their intensive implementation activities. 

Overlap between cycles is also exploited in the 
planning process. When subsystem design reviews are 
complete and the test plans and user documentation are 
available in draft form, the next cycle of preliminary 
planning starts. Thus, planners who learn of difficulties 
in realizing an implementation plan can adjust the next 
increment accordingly. 

5 DEPLOYMENT VARIATIONS 
The architecture of the ICCS is conducive to the 

phased implementation strategy because substantial 
amounts of functionality can be developed 
independently for the several functional subsystems. 
This allows distinct deployments of ICCS components 
as laboratories become available for online tests. 
Furthermore, all the subsystems rely on a common set 
of framework software [3] that itself is undergoing 
incremental refinement. Status propagation and display 
[4] are examples of functions that different subsystems 
implement independently while using the common 
ICCS framework.  

These considerations lead to some tactical decisions 
about what steps of development should be executed 
for the different subsystems. Since the ICCS is a 
loosely coupled collection of subsystems, some 
deployments include only partial functionality: an 
example is the target diagnostic subsystem that is very 
loosely coupled to the laser controls. Standalone tests 
of target diagnostic functionality have been performed 
in the absence of other subsystems. 

7 SOFTWARE CHANGE MANAGEMENT 
Required functionality for an ICCS increment must 

respond to the project schedule. Management decisions 
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based on the required functionality thus drive the 
development cycles. Another source of work for the 
development team is changes that are requested by a 
variety of stakeholders such as testers who report 
defects, developers who evolve internal interfaces, 
operators and project customers concerned with human 
factors. By convention, these two sources of work are 
kept distinct since increments of functionality are taken 
to be purely new code, while changes are expected to 
modify code that has already been tested. An SCCB 
manages the disposition of all requested changes.  

SCRs are accepted into a managed database from 
any interested party; most arise either from defects 
exposed during testing or from evolution within the 
development team. The data associated with the SCRs 
allows the SCCB to know the status of each authorized 
change: what is the next step in satisfying the request, 
who is responsible for that activity, and when is 
completion expected? The final step in a change 
process is regression testing, which occurs when an 
incremental product is delivered. About 1100 SCRs 
have been considered since the SCCB was formed, and 
half of these are still incomplete. 

6 EXPERIENCE WITH  
INCREMENTAL DEVELOPMENT 

The ICCS has been under development since project 
inception in 1998; seven cycles of code release and test 
have been completed. The size of the successive 
releases has grown from 89 thousand source lines of 
code (KSLOCs) to a present inventory of 322 
KSLOCs. The estimate of the product size at 
completion is about 1000 KSLOCs. 

Early ICCS releases have been deployed to a variety 
of different destinations for testing. Because the NIF 
facility itself is not ready to receive control system 
software, the project has constructed two successive 
generations of I&T facilities. The present 2,400-square-
foot facility houses 9 Unix workstations and 23 racks of 
electronics. Generally, one of each type of controls 
hardware module that will be used in the NIF is 
represented in the I&T facility. For example, rack-
mounted equipment includes data and application 
servers, network switches, FEPs, programmable logic 
controllers, timing system components, motor 

controllers, emulators, and transient recorders. A lab 
table is used to mount motors, shutters, photodiodes, 
and other device points for functional testing.  

Offline testing accomplished in the I&T facility is, 
for many subsystems, augmented by testing in 
dedicated laser subsystem prototyping laboratories. 
Controls deployed into these labs are integrated with 
laser hardware, shaking out interface issues and 
providing operations personnel the opportunity for 
controls validation and training. Integration tests in the 
prototyping labs are also used to proof installation and 
checkout procedures used for controls deployments into 
the NIF. 

The most extensive online test to date has been 
accomplished in the Front-end Integration System Test 
(FEIST) laboratory, where the prototype laser 
preamplifier, input laser diagnostics sensor [5], and 
timing system are assembled. The control system 
installed in the FEIST lab contains five of the ten 
planned supervisory subsystems and seven of sixteen 
planned FEPs. Beam alignment, timing, diagnosis, and 
laser pulse amplification up to 20 joules was tested 
through an automated series of shots on the 
preamplifier. Other laboratories dedicated to wavefront 
control [6], pulsed power conditioning, and Pockels’ 
cell testing have provided integrated testing of three 
additional supervisors and six additional FEPs. 

This work performed under the auspices of the U.S. 
DOE by LLNL under contract No. W-7405-Eng-48. 
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