
TUDT001
cs.SE/0111013

QUALITY CONTROL, TESTING AND DEPLOYMENT RESULTS
IN NIF ICCS

John P. Woodruff, Drew D. Casavant, Barry D. Cline, Michael R. Gorvad

LLNL, Livermore, CA 94550, USA

Abstract
The strategy used to develop the NIF Integrated

Computer Control System (ICCS) calls for incremental
cycles of construction and formal test to deliver a total
of 1 million lines of code. Each incremental release
takes four to six months to implement specific
functionality and culminates when offline tests
conducted in the ICCS Integration and Test Facility
verify functional, performance, and interface
requirements. Tests are then repeated on line to confirm
integrated operation in dedicated laser laboratories or
ultimately in the NIF. Test incidents along with other
change requests are recorded and tracked to closure by
the software change control board (SCCB). Annual
independent audits advise management on software
process improvements. Extensive experience has been
gained by integrating controls in the prototype laser
preamplifier laboratory. The control system installed in
the preamplifier lab contains five of the ten planned
supervisory subsystems and seven of sixteen planned
front-end processors (FEPs). Beam alignment, timing,
diagnosis and laser pulse amplification up to 20 joules
was tested through an automated series of shots. Other
laboratories have provided integrated testing of six
additional FEPs. Process measurements including
earned-value, product size, and defect densities provide
software project controls and generate confidence that
the control system will be successfully deployed.

1 INTRODUCTION
The Integrated Computer Control System (ICCS)

software for NIF is being constructed by an iterative
process that implements and tests specific functional
increments as required by project management.
Planned overlap between cycles of development allows
management to level the effort of design and review,
implementation, and test activities to utilize staff
efficiently. Performance measures taken during each
cycle show progress toward completion. Each
increment is first tested in the ICCS testbed. Presently,
this is followed by testing in the appropriate prototype
laboratories.

2 ITERATIVE DEVELOPMENT CYCLES
Each planning cycle begins by identifying which

requirements will be implemented for the increment.
ICCS managers review project needs and select from
the integrated project requirements documents those
functions appropriate for the next development cycle.
Availability of testbed resources, project risk resolution
and prospects for integration with laboratory equipment
influence the selection of requirements that are
included.

The product of the requirements phase is an
implementation plan: a document that defines the
requirements, the changes that have been accepted into
the software change request database, new features on
the user interface, and dependencies on other
subsystems. The implementation plan also establishes
the schedule for the increment and defines which of the
ICCS subsystems [1] will be deployed at the end of the
increment. Earned value accounting allocates value for
the product of each engineering phase, so the value
accrues steadily through the construction of the
increment.

Detailed design work on the increment’s components
begins when the implementation plan is complete. A
review of software designs precedes implementation.
Each of the subsystems in a deployment is reviewed
prior to code implementation, with reviewers’ action
items tracked to closure. Included in the documentation
presented in a review are Unified Modeling Language
representations of the software classes to be built,
interface definition language interfaces for CORBA-
distributed objects, schemae for database tables, Buhr
diagrams [2] showing concurrency, and user interface
sketches.

Implementation and unit test are accomplished using
an integrated development environment that
incorporates version control and change management
with the Ada compiler and the Java development suite.

When the several interacting programs that constitute
a testable product release are completed, integration
and deployment is performed by the configuration
management team, independent of the implementers.
The configuration manager performs quality control
verification by witnessing compliance with the

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

55

implementation plan. Requested software changes that
were completed are documented via the change control
database. The source code is stabilized by the version
control tool. All versions are confirmed to be
consistent, and the build process is repeated under
configuration control. Completeness is confirmed by
executing a set of integration tests that confirm
interface consistency of all the communicating
processes. The entire deployment is copied to the test
environment and turned over to the test team.

3 TEST PLANNING AND EXECUTION
The test team’s responsibility is to confirm that the

delivered software correctly and robustly implements
the requirements established for the increment. The
testers design, execute, and document the results of
extensive tests. Test plans and test procedures are
written starting with the requirements, and accepted
changes are documented in the implementation plan.

One or more tests are conducted for each
deployment, with each test typically encompassing
numerous test cases. For requirements traceability, test
procedures identify the requirements being verified and
the relevant procedural steps. Test procedures are
redlined as required during test execution to provide an
accurate basis for test expansion for subsequent
deployments as well as regression testing.

Tests are conducted “offline” in a dedicated
Integration and Test (I&T) facility, where
representative laser hardware is available for extensive
testing. In the I&T facility, the software can be
exercised at the limits of its capabilities and error cases
introduced to assure robustness. Testers also draft
operations manuals and oversee preparation of
configuration database instances that support activities
in the I&T facility and in laser hardware prototyping
laboratories.

Fully integrated deployments can be tested online in
a laser laboratory. During both offline and online
testing, incidents of noncompliance are recorded and
analyzed for trends. Some tests expose defects in
software: erroneous requirements, functional errors,
errors of omission, and regressive failures are tracked.
Software change requests are entered and managed by
the SCCB. Hardware defects are documented and
tracked using a similar process.

So far, over 650 test incidents have been
documented; about three-quarters of these are software
issues that result in software change requests (SCRs).
Defects that prevent completion of critical testing or
operations are classified as urgent and are repaired by
the development team as quickly as possible. A patch
to the deployment is then issued to fix the problem, and
regression tests are performed. Software defect density
to date has been approximately 2 functional defects per

1000 lines of code. The success rate for repaired
defects is approximately 90%. New defects have been
introduced in less than 10% of the patches.

4 OVERLAP OF SUCCESSIVE
INCREMENTS

The foundation subsystems – the frameworks and the
support layers where commercial off-the-shelf products
are installed – lead application development by half a
phase. The benefit of this tactic is that new framework
functionality is specified ahead of need. Framework
requirements are defined immediately after the
application subsystems have completed their design
reviews (in the preceding cycle), and the
implementation of framework enhancements occurs
while the succeeding application systems are being
specified and designed. This tactic delivers (partially)
tested frameworks to application developers just as they
begin their intensive implementation activities.

Overlap between cycles is also exploited in the
planning process. When subsystem design reviews are
complete and the test plans and user documentation are
available in draft form, the next cycle of preliminary
planning starts. Thus, planners who learn of difficulties
in realizing an implementation plan can adjust the next
increment accordingly.

5 DEPLOYMENT VARIATIONS
The architecture of the ICCS is conducive to the

phased implementation strategy because substantial
amounts of functionality can be developed
independently for the several functional subsystems.
This allows distinct deployments of ICCS components
as laboratories become available for online tests.
Furthermore, all the subsystems rely on a common set
of framework software [3] that itself is undergoing
incremental refinement. Status propagation and display
[4] are examples of functions that different subsystems
implement independently while using the common
ICCS framework.

These considerations lead to some tactical decisions
about what steps of development should be executed
for the different subsystems. Since the ICCS is a
loosely coupled collection of subsystems, some
deployments include only partial functionality: an
example is the target diagnostic subsystem that is very
loosely coupled to the laser controls. Standalone tests
of target diagnostic functionality have been performed
in the absence of other subsystems.

7 SOFTWARE CHANGE MANAGEMENT
Required functionality for an ICCS increment must

respond to the project schedule. Management decisions

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

56

based on the required functionality thus drive the
development cycles. Another source of work for the
development team is changes that are requested by a
variety of stakeholders such as testers who report
defects, developers who evolve internal interfaces,
operators and project customers concerned with human
factors. By convention, these two sources of work are
kept distinct since increments of functionality are taken
to be purely new code, while changes are expected to
modify code that has already been tested. An SCCB
manages the disposition of all requested changes.

SCRs are accepted into a managed database from
any interested party; most arise either from defects
exposed during testing or from evolution within the
development team. The data associated with the SCRs
allows the SCCB to know the status of each authorized
change: what is the next step in satisfying the request,
who is responsible for that activity, and when is
completion expected? The final step in a change
process is regression testing, which occurs when an
incremental product is delivered. About 1100 SCRs
have been considered since the SCCB was formed, and
half of these are still incomplete.

6 EXPERIENCE WITH
INCREMENTAL DEVELOPMENT

The ICCS has been under development since project
inception in 1998; seven cycles of code release and test
have been completed. The size of the successive
releases has grown from 89 thousand source lines of
code (KSLOCs) to a present inventory of 322
KSLOCs. The estimate of the product size at
completion is about 1000 KSLOCs.

Early ICCS releases have been deployed to a variety
of different destinations for testing. Because the NIF
facility itself is not ready to receive control system
software, the project has constructed two successive
generations of I&T facilities. The present 2,400-square-
foot facility houses 9 Unix workstations and 23 racks of
electronics. Generally, one of each type of controls
hardware module that will be used in the NIF is
represented in the I&T facility. For example, rack-
mounted equipment includes data and application
servers, network switches, FEPs, programmable logic
controllers, timing system components, motor

controllers, emulators, and transient recorders. A lab
table is used to mount motors, shutters, photodiodes,
and other device points for functional testing.

Offline testing accomplished in the I&T facility is,
for many subsystems, augmented by testing in
dedicated laser subsystem prototyping laboratories.
Controls deployed into these labs are integrated with
laser hardware, shaking out interface issues and
providing operations personnel the opportunity for
controls validation and training. Integration tests in the
prototyping labs are also used to proof installation and
checkout procedures used for controls deployments into
the NIF.

The most extensive online test to date has been
accomplished in the Front-end Integration System Test
(FEIST) laboratory, where the prototype laser
preamplifier, input laser diagnostics sensor [5], and
timing system are assembled. The control system
installed in the FEIST lab contains five of the ten
planned supervisory subsystems and seven of sixteen
planned FEPs. Beam alignment, timing, diagnosis, and
laser pulse amplification up to 20 joules was tested
through an automated series of shots on the
preamplifier. Other laboratories dedicated to wavefront
control [6], pulsed power conditioning, and Pockels’
cell testing have provided integrated testing of three
additional supervisors and six additional FEPs.

This work performed under the auspices of the U.S.
DOE by LLNL under contract No. W-7405-Eng-48.

REFERENCES
[1] L. J. Lagin et al., “The Overview of the National

Ignition Facility Distributed Computer Control
System,” ICALEPCS 2001.

[2] J. A. Buhr, “System Design with Ada” Prentice
Hall 1984.

[3] Robert W. Carey et al., “Large-scale CORBA-
distributed software framework for NIF controls,”
ICALEPCS 2001.

[4] Kirby W. Fong et al., “Application Software
Structures Enable NIF Operations,” ICALEPCS
2001.

[5] R. D. Demaret et al., “Beam Diagnostics Systems
for the NIF,” ICALEPCS 2001.

[6] Lewis Van Atta et al., “The Wavefront Control
System for the NIF,” ICALEPCS 2001.

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

57

