
THAT005
physics/0111034

COMMON SOFTWARE FOR THE ALMA PROJECT

G. Chiozzi, B. Gustafsson, B. Jeram, P.Sivera - ESO, Garching bei Muenchen, DE
M. Plesko, M. Sekoranja, G. Tkacik, J. Dovc, M. Kadunc, G. Milcinski, I.Verstovsek, K. Zagar -

JSI, Ljubljana, SI

Abstract
The Atacama Large Millimeter Array (ALMA) is a

joint project between astronomical organizations in
Europe, USA and Japan. ALMA will consist of at least
64 12-meter antennas operating in the millimeter and
sub-millimeter wavelength range, with baselines up to
10 km. It will be located at an altitude above 5000m in
the Chilean Atacama desert [1].

The ALMA Common Software (ACS) provides a
software infrastructure common to all partners and
consists of a documented collection of common
patterns in control systems and of components, which
implement those patterns. The heart of ACS is an
object model of controlled devices, called Distributed
Objects (DOs), implemented as CORBA network
objects. Components such as antenna mount, power
supply, etc. are defined by means of DOs. A code
generator creates Java Bean components for each DO.
Programmers can write Java client applications by
connecting those Beans with data-manipulation and
visualization Beans using commercial visual
development tools or programmatically.

ACS is based on the experience accumulated with
similar projects in the astronomical and particle
accelerator contexts, reusing and extending concepts
and components. Although designed for ALMA, ACS
has the potential for being used in other new control
systems and other distributed software projects, since it
implements proven design patterns using state-of-the-
art, stable, reliable technology.

1 INTRODUCTION
Since the beginning of the ALMA project we have

been aware of the complexity of the project with
respect to geographically distributed development and
differences in the traditional way of working of the
teams involved. The number of applications and
developers will increase to very large numbers.

To alleviate these problems, we have decided to
introduce a central object oriented framework, that we
call the ALMA Common Software (ACS). It is located
in between the ALMA application software and other
basic commercial or shared software on top of the
operating systems. It provides a well-tested platform
that embeds standard design patterns and avoids

duplication of effort. At the same time it is a natural
platform where upgrades can be incorporated and
brought to all developers. It also allows, through the
use of well-known standard constructs and components,
other team members who are not authors of ACS to
easily understand the architecture of software modules,
making maintenance affordable even on a very large
project.

In order to avoid starting from scratch, we have
evaluated emerging systems that could provide a good
basis for ACS and bring into the project CORBA and
other new technology know-how. We have then started
a fruitful collaboration between ESO and JSI which,
through cross-fertilization of experience and ideas from
our previous projects, has driven us to the concepts and
implementation of ACS. For more details on the
considerations that have led to the concepts behind
ACS see [2] and [3] [4].

2 ACS ARCHITECTURE
ACS is based on the object oriented CORBA

middleware, which gives the whole infrastructure for
the exchange of messages between distributed objects
and system wide services [5]. Whenever possible, ACS
features are implemented using off-the-shelf
components; ACS itself provides, in this case, the
packaging and the glue between these components.

The object paradigm of CORBA is fully used: each
controlled device type is represented by one specific
CORBA interface that subclasses the base distributed
object (DO). Each DO is further composed of
properties that correspond to what is called controlled
points, channels or tags in SCADA systems. Each
property is an object too, implementing get/set

PropertyDO 0..n0..n

0..n0..n

NamedComponent Characteristic0..n0..n

Figure 1: DO – Property – Characteristic class diagram

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

439

CORBA Middleware

Command
System

Error System Logging System

ACS Application
Framework

FITS libraries

Astro libraries

UIF libraries

Applications

Distributed
Object

Scripting

Alarm System Sampling

Time SystemData channel

Archiving
System

ACE

Management and
Access Control

Development
tools

2 - Core components

1 - Base tools

3 - Services

4 - Hi-level APIs and
tools

...more to come...

Device DriversCORBA MiddlewareCORBA Middleware

Command
System

Command
System

Error SystemError System Logging SystemLogging System

ACS Application
Framework

ACS Application
Framework

FITS librariesFITS libraries

Astro librariesAstro libraries

UIF librariesUIF libraries

ApplicationsApplications

Distributed
Object

Distributed
Object

ScriptingScripting

Alarm SystemAlarm System SamplingSampling

Time SystemTime SystemData channelData channel

Archiving
System

Archiving
System

ACEACE

Management and
Access Control

Management and
Access Control

Development
tools

Development
tools

2 - Core components2 - Core components

1 - Base tools1 - Base tools

3 - Services3 - Services

4 - Hi-level APIs and
tools

4 - Hi-level APIs and
tools

...more to come......more to come...

Device DriversDevice Drivers

Figure 2: ACS Packages

commands, event-driven monitors and alarms,
asynchronous/synchronous communication, describing
itself via characteristics such as min/max, units, etc.
(Figure 1).

The UML Package Diagram in Figure 2 shows the
main packages into which ACS has been subdivided.
For more details, refer to the ACS Architecture,
available on the ACS Web Page [12].

2.1 Base Tools

The bottom layer contains base tools that are
distributed as part of ACS to provide a uniform
development and run time environment on top of the
operating system for all higher layers and applications.
These are essentially off-the-shelf components and
ACS itself just provides packaging, installation and
distribution support. This ensures that all installations
of ACS (development and run-time) will have the same
basic set of tools.

2.2 Core components

This second layer ensures standard interface patterns
for all distributed objects and provides essential
components, necessary for the development of any
application. Among these:

• Distributed Object (BACI)
Base interfaces and classes for Distributed
Object, Properties and Characteristics (see
Figure 1) are implemented in this package. This
component is called Basic Control Interface
(BACI) [6].

• Data Channel
The Data Channel provides a generic
mechanism to asynchronously pass information
between data publishers and data subscribers, in
a many-to-many relation scheme.

• Time System
Time and synchronization services.

• Error System
API for handling and logging run-time errors,
tools for defining error conditions; tools for
browsing and analyzing run-time errors.

• Logging System
API for logging data, actions and events.
Transport of logs from the producer to the
central archive. Tools for browsing logs.

2.3 Services

The third layer implements higher level services.
Among these:

• Management and access control interface
(MACI)
Design patterns, protocols and high level meta-
services for centralizing access to ACS services
and DOs, to manage the full life-cycle of DOs
including persistent store, and to supervise the
state of the system [7]

• Archiving System
API tools and services for archiving monitoring
data and events.

2.4 API and High-level tools

The fourth and last layer provides high level APIs
and tools. The main goal for these packages is to offer a
clear path for the implementation of applications, with
the goal of obtaining implicit conformity to design
standards. Among these, we mention:

• UIF Libraries
Development tools and widget libraries for User
Interface development. Java user interfaces are
based on the ABeans library that wraps CORBA
objects into Java Beans, which are then

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

440

connected with commercial data-manipulation
and visualization Beans using visual tools or
programmatically [8].

• ACS Application Framework
Implementation of design patterns and to allow
the development of standard applications.

3 ACS DEVELOPMENT STATUS
The development of ACS is driven by the needs of

the teams developing higher level software, and in
particular the ALMA Control System.

Our development cycle foresees one major release
every year, with an intermediate, bug-fixing, release
after six months.

ACS 0.0, released in September 2000 was essentially
a concept demonstration prototype. With the support of
some components of the VLT Control Software [3]
[10] it has been used to develop a prototype control
system for the 12m Kitt Peak antenna. This was
successfully tested in December 2000.

ACS 1.0, released in September 2001, is the first
“production release”. It is used for the development of
TICS, the ALMA Test Interferometer Control System
[11] (a first prototype was developed with ACS 0.0 in
the first half of 2001). Two test antennas will be
installed starting from spring 2002 at the VLA site.

The next major release, ACS 2.0, is foreseen for
September 2002 and will be a fully functional system.

ACS will then need to be extended to accommodate
the needs of the ALMA Data Flow Subsystems
(Archiving, Scheduling, Observation Tools, Pipeline,
etc.)

4 CONCLUSION
ACS has been developed keeping in mind the needs

of a wide range of astronomical and accelerator control
projects. It can easily run on many platforms and
operating systems and is open source. The complete
code is compiled with standard GNU cpp, including the
sources of the underlying CORBA implementation,
TAO [13], which is also open source. A part of the
service client applications are written in Java, using
ORBacus [14] for the ORB, which is free for non-
commercial purposes. ACS is currently supported on
Linux and VxWorks. A Solaris and a MS Windows
version are also used internally at ESO and JSI for
testing purposes.

We are therefore convinced that many other projects
can use ACS. At the same time, we think that a wider
user base can provide us with very valuable feedback.

5 ACKNOWLEDGEMENTS
The ACS project is managed by ESO in

collaboration with JSI. This work is the result of many
hours of discussions, test and development inside our
groups and in the various ALMA centers at NRAO,
IRAM and Bochum. We thank here all our colleagues
for the important contribution to the definition and
implementation of ACS.

REFERENCES
[1] ALMA Web page, http://www.mma.nrao.edu/
[2] G.Raffi, G.Chiozzi, B.Glendenning, “The

ALMA Common Software (ACS) as a basis
for a distributed software development”,
ADASS XI, Victoria, BC, Canada, Sep. 2001

[3] M. Plesko, Implementing Distributed
Controlled Objects with CORBA, PCaPAC99
workshop, KEK, Tsukuba, January 1999

[4] B. Jeram at al., Distributed Components in
Control, ICALEPCS 1999, Trieste, Nov. 1999

[5] G. Milcinski et al, Experiences With
Advanced CORBA Services, these
proceedings

[6] G. Tkacik et al., BACI specs, see [12]
[7] K. Zagar et al., MACI specs, see [12]
[8] G. Tkacik et al: Java Beans of Accelerator

Devices for Rapid Application Development,
PCaPAC99 workshop, KEK, Tskukuba,
January 1999

[9] G.Chiozzi, “An object-oriented event-driven
architecture for the VLT Telescope Control
Software”, ICALEPCS 1995, Chicago, USA,
Oct. 1995

[10] G.Raffi, “The VLT control software
development and installation”, ICALEPCS
1997, Beijing, China, Nov. 1997

[11] M. Pokorny, “Distributed Control System for
the Test Interferometer of the Atacama Large
Millimeter Array Project”, these proceedings

[12] ACS web page and online documentation,
http://www.eso.org/~gchiozzi/AlmaAcs

[13] TAO Home Page:
http://www.cs.wustl.edu/~schmidt/TAO.html

[14] ORBacus Home Page: http://www.ooc.com/

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

441

