
THAP022
hep-ex/0111086

INTEGRATING NEWER TECHNOLOGY SOFTWARE SYSTEMS INTO
THE SLAC LEGACY CONTROL SYSTEM - TWO CASE HISTORIES AND

NEW CMLOG DEVELOPMENTS

M. Laznovsky and R. MacKenzie, Stanford Linear Accelerator Center, Stanford, CA 94309, USA

J. Chen, Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA

Abstract
It has been the goal of SLAC Controls Software to

offload processing from the aging Alpha/VMS based
control system onto machines that are more widely
accepted and used. An additional goal has been to
provide more modern software tools to our user
community. This paper presents two software products
which satisfy those goals.

1 CMLOG: SLC INTEGRATION AND
NEW DEVELOPMENTS

Common Message Logger (CMLOG) [1] [3] is an
already-existing object-oriented and distributed system
that allows the logging of messages to a centralized
database and lets users and applications view incoming
messages in near-real-time using a Motif browser and
retrieve stored data from the database. CMLOG was
integrated with the legacy system by writing programs
on VMS and Solaris which took advantage of the
CMLOG Applications Programming Interface (API)
for shipping messages (in near-real-time) from VMS to
the CMLOG server running on Solaris. CMLOG is also
used to log messages from EPICS IOCs to the CMLOG
server. Those messages are forwarded from Solaris to
the VMS system using the CMLOG API. New
developments for CMLOG are presented. These
include a Java Browser.

1.1 SLAC Integration

CMLOG provides an easy to use "Browser" API for
retrieving messages from the cmlogServer. For the
purpose of SLC integration, the forwarding program
uses this API to retrieve messages in "Update" mode
which provides the messages as they arrive at the
cmlogServer from EPICS IOCs and other clients. Then,
the forwarding program simply sends those messages
on to the Alpha/VMS error logging system using a
simple TCP/IP connection to an already-existing SLC
interface.

It was necessary to write a TCP/IP server to receive
messages originating on the Alpha/VMS Control
System. This simple server receives messages from a

sending program on Alpha/VMS and uses the CMLOG
Client API to put the messages into the cmlogServer.

The result is that all the messages that exist in the
legacy Alpha/VMS error log system also exist on the
more modern CMLOG based system. This is seen as a
temporary situation while the operators migrate to
CMLOG. This configuration is shown in Figure 1.1.

Figure 1.1: CMLOG Configuration at SLAC

1.2 A New Generation of Message Throttling

The CMLOG client code was modified at SLAC to
support a different style of message throttling than the
one originally built into the CMLOG client. This new
code is backwardly compatible with the old style of
throttling (the old calls still work). Both C and C++
API calls are supported.

The original style CMLOG throttling maintains a
history of unique field values and throttles on each of
those separately. No provision is made to specify
specific values of special interest for throttling; the

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

531

system would just allow a certain number of each value
through.

The new throttling calls support filtering on specific
contents of tags (fields) of a message. A throttle "limit"
specifies the number of messages desired per time
period ("deltaTime"), and throttles may be re-started at
any time with different limit and time-period
parameters.

In addition, summary messages are output when
throttles are started, stopped, and after throttling has
resulted in messages being dropped. A function is
provided for displaying the current list of throttles.

Here is an example of a call to set a new-style
throttle. This call sets a throttle on the field(or tag)
"text", allowing two messages every ten seconds which
have the subsrtring "agv" in them.

filter -> setThrottle ("text",
 2,
 10.0,
 "agv");

1.3 Java API and Browser.

The CMLOG Java API provides the same capability
as the C++ and C Browser APIs. That is, programmers
can write their own browser and other applications to
fetch data from cmlogServer. The Java API is
implemented as Java package ’cmlog’. The API is well
documented on the web in standard javadoc format [3].
Useful example programs are provided as part of the
standard CMLOG distribution.

The CMLOG Java Browser is implemented using the
Java Swing package and makes use of the Java
Browser API. It is supported on Java 1.2 and above.
The java bytecode can be built from scratch using the
CMLOG distribution, or, a pre-compiled file
"cmlog.jar" is also provided.

The Java Browser has most of the same features that
the Motif browser offers with the exception of:
displaying error codes in different colors, displaying
strings for a set of integers, and invoking user scripts.
Those features will be added in future releases.

1.4 32 Bit Support

The latest release of CMLOG is 64 bit compatable. It
has been tested on 64-bit solaris and Alpha Linux.

2 COMMAND SERVER
The Command Server (cmdSrv) [2] program

currently runs on Solaris and accepts commands from
remote nodes like the VMS legacy system and executes
them. Functionally, cmdSrv is similar to UNIX rsh
with additional capabilities including: increased
performance, added security, ease of configuration, on-
demand reconfiguration, static load balancing, a

flexible client-side-API, and a query capability for
keeping track of who executed what from where.
CmdSrv is used for invoking many applications
including EPICS dm displays and CMLOG. CmdSrv
was designed primarily to execute X-displays but can
also be used to execute other unix commands.

2.1 Features, Architecture and Design

The parent-process portion of cmdSrv is a typical
TCP/IP server. It accepts new connections from remote
client processes. For each connection, it forks a child
process which, in turn, execs the command that was
sent from the client. The parent process then waits a
number of seconds to see if the child dies prematurely
(probably due to an error in the command that was
requested). If the child does die prematurely, then an
error condition is returned to the client. Otherwise,
success is returned to the client. Then, the connection is
closed. This Architecture is shown in Figure 2.1

Figure 2.1: Simple cmdSrv Example Configuration

CmdSrv supports the following client command
requests (sent inside the command request packet):

 EXEC -execute an x-command or script
 REFRESH - reload the control files.

SHOW - return a list of active child
 processes.

 KILL - kill child processes.

The client command request packet also lets the
client specify the command class for the command
being executed. Only one command class is allowed
per display head. This is useful for limiting the number

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

532

of active x-displays that can be running in order to
preserve resources.

There are two files which control the operation of
cmdSrv. One file contains a list of network nodes from
which client requests may come from. These are the
only nodes from which commands may originate. The
second file is a list of allowable command classes.
Either file may be re-loaded into cmdSrv by sending
the REFRESH command from any client client.

The cmdSrv parent process maintains a list of active
child processes. For each child, the Requesting User,
Process, Class, and Node are stored. Additionally, the
X-display, PID, and requested command are stored.
Any client may request to be sent this list of processes
by sending the SHOW command to cmdSrv. This is
very useful for remotely keeping track of what is
running under cmdSrv and where any X-displays are
active.

A flexible and portable "C" API is provided for
client programmers. The API makes it easy to send
command request messages from client programs
(example programs are provided).

A flexible log file capability is available where the
cmdSrv parent process logs (to a file) extensive
information about each request that it receives from
clients.

REFERENCES
[1] J. Chen et al., ’CMLOG: A Common Message

Logging System’ proc. of ICALEPCS 1997.
[2] R. MacKenzie, ’Command Server Web page

http://www.slac.stanford.edu/grp/cd/soft/cmdSrv/
2001

[3] J. Chen, ’CMLOG Web page
http://www.jlab.org/cdev/cmlog.html 2001

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

533

