
THAP015
cs.SE/0111036

DATA ACCESS — EXPERIENCES IMPLEMENTING AN OBJECT
ORIENTED LIBRARY ON VARIOUS PLATFORMS∗

R. Lange, BESSY, 12489 Berlin, Germany
J. Hill, LANL, Los Alamos, NM 87545, USA

∗ Work supported by the Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF), the Land Berlin
and the Office of Energy Research, Basic Energy Science of the US Department of Energy.

Abstract
Data Access will be the next generation data abstrac-

tion layer for EPICS [1]. Its implementation in C++
brought up a number of issues that are related to object
oriented technology’s impact on CPU and memory
usage. What is gained by the new abstract interface?
What is the price that has to be paid for these gains?
What compromises seem applicable and affordable?
This paper discusses tests that have been made about
performance and memory usage as well as the different
measures that have been taken to optimize the situation.

1 DATA ACCESS
In the next generation of EPICS a redesigned data

abstraction layer will replace the existing data container
library GDD [2]. An object-oriented library called Data
Access will provide this new interface. The background
and key design objectives of this approach are
described in detail in another contribution to this
conference [1].

1.1 Features

The first and maybe main application for this library
will be its use by the EPICS network protocol Channel
Access [3]. In this context Data Access offers a number
of key advantages over the existing data conversion
library:

• Extensibility. Applications (both clients and
servers) may define new data container struc-
tures that Channel Access will transport across a
network.

• Range checks. For a set of basic data types and
structures thereof conversion routines are pro-
vided that include checking data validity.

• Type safety. The library interface uses the fea-
tures that C++ provides for compile time type
checking (e.g. overloaded functions for all basic
data types).

• Multi-dimensional arrays. Arrays of arbitrary
size and number of dimensions are supported.
Methods for extraction of sub-arrays are pro-
vided that include boundary checking. Array

data may be read in arbitrary length chunks to
allow using buffers of any size for further pro-
cessing and network transport.

• Improved conversion table design. In EPICS
the data conversion jump table was originally
coded explicitly by hand. With GDD it was pro-
gram-generated, and with Data Access it is pro-
duced by a comparatively compact set of C++
templates.

1.2 Target Environments

Using Data Access as the data abstraction layer for
Channel Access requires the library to be ported to a
large number of target systems with different demands.

Toolkit components running on workstations must
cope with a range of available compilers, but code size
is less important because old workstations are routinely
taken out of service. In contrast, legacy embedded
platforms without benefit of virtual memory, such as
Motorola 68k based EPICS input output controllers, are
not routinely upgraded. These computers place
stringent demands on code size and performance.

The C++ compilers for the different target platforms
are either rapidly evolving or frozen to a certain version
of the embedded real time operating system. Each
compiler implements slightly different subsets of the
C++ standard. Unfortunately, certain advanced features
of C++ (name spaces, local template class members)
had to be completely avoided or replaced by work-
arounds until all compilers support these constructs.

1.3 Test Bed

The first implementation was compiled and tested on
three platforms using three different compilers:

• Pentium PC running Linux – G++
• Sun Ultra-30 running Solaris – Sun WSpro
• Sun Ultra-30 running Solaris – G++
• Pentium PC running Windows – Microsoft C++
• Motorola 68k running vxWorks – G++
The benchmarks were generated with a small test

application using some classes that resemble “typical”
containers holding the value, alarm state and timestamp

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

520

properties. Conversion performance was measured by
assigning between containers of different data types.
Processor cache related influences have been taken into
account by testing with different size arrays of
containers. Nevertheless, the results can only provide a
first impression of the library’s behavior. Further tests
on a wider set of platforms with mature compilers are
necessary.

2 PERFORMANCE
The data conversion routines will be used multiple

times in each transaction between Channel Access and
the data on both server and client side. It is obvious that
the run-time efficiency of these conversions is crucial
for the overall system performance.

2.1 Design

One important performance aspect directly influ-
enced the interface design: Modeling the new interface
after the existing GDD classes would have led to the
accessing methods being implemented as virtual func-
tions. Having every access go through the virtual func-
tion table of the data class was found to be too big a
performance hit. The current implementation features a
callback mechanism, where the user data class calls
back into a library-provided adaptor for each container
element. This mechanism might appear to be more
complicated to use, but it is more efficient.

2.2 Observations

The performance highly depends on the machine and
the compiler used to generate the library. Discussing
detailed performance numbers for the different
machines and compilers would certainly go beyond the
scope of this paper, but a few statements are safe to
make:

• Numeric data container assignment takes about
1 µs on the Pentium/GNU and about 4 µs on
SPARC/WSpro.

• On SPARC, the WSpro compiled code takes
about 50 % more time when one of the contain-
ers’ data is unsigned and the other’s is signed.

• Conversions between numerical and string data
take about 10 times longer than between nu-
merical types — with the exception of taking
only about 3 times longer on SPARC/GNU.

• Assignment of integer arrays adds between
0.02 µs and 0.1 µs per element depending on the
array size and structure and 0.6 µs per chunk on
the Pentium/GNU, 4 times as much on the
SPARC/WSpro.

2.3 Further Improvements

For contiguous array and sub-array copies of the
same data type a specialization was introduced that uses
the C runtime function memcpy() instead of element-
by-element assignment. This increases the performance
in these special but common cases by a factor of 4.

3 OBJECT SIZE
With legacy embedded systems the object size of the

library is an important issue. Several test series have
been made and measures have been taken to reduce the
library’s object size while retaining the advantages and
features shown above.

In this paper’s context all size numbers are shown for
the converter function classes on the Pentium/Linux/
GNU platform. Generally, the same object files are
twice as large for the SPARC and half as large for the
Motorola 68k target, which reflects the different pro-
cessor architectures.

The existing C conversion library — with less func-
tionality than the new interface — has an object size of
37 KB.

Despite following Scott Meyer’s rules on effective
C++ programming [4,5] as close as possible, a point
was reached during the implementation of Data Access
when the G++ compiler on Sun wasn’t able to compile
the library anymore. The compiler process grew to
350 MB resident process size and had to be stopped
after an hour without any results. The Sun WSpro man-
aged to compile the code, but took almost 40 minutes.
In contrast, Linux and Windows compilers compiled
the code without unreasonable delay. At this point the
size of the basic conversion template classes for array
and scalar data had grown to 8 MB and 5MB — a total
of 13 MB object code generated from less than 1000
lines of source. That certainly wasn’t tolerable.

A number of measures have been taken to improve
the situation. Table 1 shows an overview of the result-
ing object sizes.

3.1 Optimization and Debug Information

Templates and inline function calls may create an
enormous amount of debugging information. Setting
reasonable compiler switches to avoid generation of
debug information and to enable a suitable level of
optimization shrunk down the objects to 1 MB and
360 KB respectively.

3.2 Use of Templates

Data Access uses templates extensively. A fairly
large number of classes are templates with one type
parameter: the user data type (in this case from a set of
n=15 user data types). The central data conversion

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

521

functions naturally are templates with two formal type
parameters: the source and the destination data type.
Therefore within a universal library, these classes get
instantiated n×n = 225 times. So every line of code or
data within these classes increases the object size by
225 times its size.

3.3 Exceptions

When using exceptions, additional object code is
generated by the compiler [6]. This code sums up to a
few hundred bytes per throw(). Simply putting the calls
to throw() as static members into an external class re-
duced the code size further down to 375 KB and
200 KB respectively.

3.4 Inline Declarations and Repeated Code

Inline functions increase performance by avoiding a
function call. Their code is repeated at every use, which
is usually tolerable, but within templates — multiplied
by the number of instantiations — they must be used
judiciously. The code was changed to avoid calling
inline functions within templates where this was
inappropriate.

Originally the recursive algorithm to copy arrays of
arbitrary size and number of dimensions was placed
within the template conversion class. The class design
was changed to move this functionality out of this class
into the user’s class.

These measures reduced the object size down to
195 KB (in both cases).

3.5 Implicit Conversion

Another step uses the fact that C++ implicitly con-
verts function arguments if there is no precision loss
(i.e. from smaller to wider formats). Therefore some
template functions have to be instantiated only for a
few source types — the compiler will promote the ar-
guments to a canonical type. This change reduced the
object sizes to the current values of 193 KB and
132 KB respectively.

Table 1: Object Sizes for Conversion Routines
Status Array Scalar

Initial 8 MB 5 MB
No debug info, optimized 1 MB 360 KB
Without throw() 375 KB 200 KB
Without archive copy code
and inline definitions

195 KB 195 KB

With implicit conversion 193 KB 132 KB

4 CONCLUSIONS
Data Access, the next generation data abstraction

layer for EPICS, provides a number of important ad-
vantages over the existing interfaces. Its implementa-
tion in C++ makes extensive use of the powerful con-

structs the language provides, thereby considerably
reducing the size of the source code.

The existing C++ compilers do not fully implement
the C++ standard — thus writing portable code can be
tedious. Workarounds must be introduced for tempo-
rarily missing language features.

The compilers also show significant differences in
compile time and efficiency. The resulting object code
covers a wide size and performance range. Some of the
native compilers take a surprisingly long time to gen-
erate slow and bloated code.

Using C++ and object oriented technologies in per-
formance critical low-level libraries introduces a num-
ber of potential problems and difficulties that one might
not expect. It is necessary to design and implement with
caution: powerful language constructs can multiply side
effects that may outnumber the advantages gained. The
current C++ compilers make it impossible to simply
implement a clear straightforward design. The
programmer has to take into account extensive details
about each compiler’s implementation of certain
language features, if the code needs to be portable.

Nevertheless, with all the optimizations that have
been applied, we are certain that the remaining per-
formance and size overhead will be neglectable com-
pared to the benefits available with the improved inter-
face.

REFERENCES
[1] J. Hill, R. Lange: “Next Generation EPICS Inter-

face to Abstract Data'”, ICALEPCS 2001 Confer-
ence, San Jose, USA.

[2] J. Kowalkowski: “General Data Descriptor Library
User's Guide and Reference Manual”, 1996, APS,
Argonne, USA1.

[3] J. Hill: “EPICS R3.14 Channel Access Reference
Manual”, 2001, LANL, Los Alamos, USA.

[4] S. Meyers: “Effective C++”, second edition,
Addison Wesley Longman Inc., 1998.

[5] S. Meyers: “More Effective C++”, Addison
Wesley Longman Inc., 1996.

[6] T. Cargill: “Exception Handling: A False Sense of
Security”, first published in: C++ Report, Novem-
ber-December 1994, included in the CD edition of
[4,5].

1 http://www.aps.anl.gov/asd/controls/epics/EpicsDocumenta
tion/EpicsGeneral/gdd.html

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

522

