
THAP005
cs.PF/0111034

EXPERIENCES WITH ADVANCED CORBA SERVICES

G. Milcinski, M. Plesko, M. Sekoranja, Josef Stefan Institute, Ljubljana, Slovenia

Abstract
The Common Object Request Broker Architecture

(CORBA) is successfully used in many control systems
(CS) for data transfer and device modeling.
Communication rates below 1 millisecond, high
reliability, scalability, language independence and other
features make it very attractive. For common types of
applications like error logging, alarm messaging or slow
monitoring, one can benefit from standard CORBA
services that are implemented by third parties and save a
tremendous amount of developing time. We have started
using a few CORBA services on our previous CORBA-
based control system for the light source ANKA [1] and
use now several CORBA services for the ALMA
Common Software (ACS) [2], the core of the control
system of the Atacama Large Millimeter Array. Our
experiences with the interface repository (IFR), the
implementation repository, the naming service, the
property service, telecom log service and the notify
service from different vendors are presented.
Performance and scalability benchmarks have been
performed.

1 INTRODUCTION
Our team has over the last five years developed a

control system framework that uses and extends modern
component-based, distributed computing and object-
oriented concepts. The basic entities of the system are
accelerator devices that are represented as CORBA
(Common Object Request Broker Architecture) objects
– objects that are remotely accessible from any
computer through the established client-server
paradigm. We chose CORBA among other
environments for distributed systems (CDEV, J2EE,
DCOM...) because of its platform and language
independence. A successful implementation, based on
Borland’s Visibroker [6] is running the CS at the ANKA
light source. It uses Visibroker’s proprietary smart
agent, location service and interface repository. Then we
decided also to use other standard CORBA services. At
first we had some doubts – we were not sure if we could
accommodate programs that were not written by us, and
we were afraid of the high prices of some of these
programs, etc. But starting fears have vanished quickly.
We have completely rewritten the framework, making it
more general and useful for other control systems [2].
We used mostly TAO [4] and ORBacus [5]

implementations (both are free for non-commercial use),
both for ORB and services.

2 USED SERVICES

2.1 Event Service

This service coordinates the communication between
two kinds of objects – supplier (it produces event data)
and consumer (it processes event data). That is exactly
what a control system is doing – for example: user sets
current to a power supply and vice versa – a machine
sends readback to the user. When we started to develop
ANKA control system, there was a major disadvantage
of this service – it supported just generic events of type
Any. But, to discover all typing errors at compile time,
we wanted typed events [1]. That is why we defined our
own callback classes, one for each data type.

Nowadays both ORBacus and TAO Event Service
already support typed events (but TAO’s solution for
typed events support is non-standard).

2.2 Notify service

This extends the Event Service and has added some
further functionality. These are filtering events (by type
and data), subscription to only some kinds of events, the
ability to configure various qualities of service
properties (per-channel, per-proxy or even per-event).

This is in our opinion the most useful service. It is just
perfect for controlling a few devices. The main problem
is that queuing, filtering and processing events demand
time, memory and CPU and it could not process all data
used in a large control system. It is a potential
bottleneck and a single point of failure. It is best used
for system wide services such as alarm and logging,
where one central process collects all messages from
anywhere in the control system.

ORBacus and TAO Notify Service do not support
typed events. One can use structured events, which are
actually Anys, but you can set a type property of an
event.

We performed benchmark and scalability tests on this
service, which will be discussed later.

2.3 Telecom Log Service

This is some kind of event consumer, which stores
data in persistent store. In some cases it must also

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

502

supply an event (to inform the user that something in its
state has changed – like when a threshold is being
crossed). ORBacus did actually implement notify
logging service which has all notification functionality
and a persistent store. User can also query log entries,
using some kind of filter.

ORBacus T-Log has already implemented storing
data in its own database, which is not suited for large
amounts of data. TAO’s Telecom Log Service stores
records in memory and it is actually just a skeleton for a
serious implementation. We had to add features
ourselves (like persistent store, sending events to notify
channel, etc).

2.4 Naming Service

A useful tool - just like the telephone directory. It is
used to give names to objects. To work properly there
are two requirements – all objects have to be named and
each name is used only once. An object can have two
names, but vice versa is not possible. It is much like file
structure on hard disk – the equivalent name can only be
used for a file in different directory. Other services are
easier to manage when connected to the naming service
(for example: notify supplier and consumer can
exchange IORs of the event channel; in ORBacus demos
you can find an approach without NS – saving and
reading IOR to/from a file – a little clumsy idea - just
think about sending a file by every channel creation).

2.5 Property Service

Property Service introduces a Property Set, which is a
collection property. Every property has a name (unique
within the property set) and a value, which can be of any
type (the CORBA *any* type). Property Sets are very
useful for storing object's data. For example, an object
representing a device in our control system is storing all
its characteristics in a property set, so that they are all
read in a single CORBA call during initialization. On
Windows systems, a key in the registry is equivalent to a
property set.

2.6 Interface Repository

A service that exposes the interfaces of CORBA
objects (the IDL file) in form of an object model, which
is available at run-time. Through the IFR, a program is
able to determine what operations are valid on an object
and make an invocation on it, even though its interface
was not known at compile-time In that way we have
developed Object Explorer (OE) – a program, which can
control the whole system without knowing almost
anything about the structure of the controlled devices.
The OE finds all CORBA objects on the network and
asks IFR for their operations. Using dynamic invocation
interface (DII) it executes a chosen method via its name

and queries the user for all parameters in the parameter
list.

Another interesting usage of the IFR was in our
JavaBeans generator: the generator queries the running
IFR and creates Java source code that wraps the
CORBA objects into Java Beans – one Bean per
CORBA object interface. This is much more convenient
than writing our own IDL parser. We use the ORBacus
implementation of this service and have found it very
stable – it has been running continuously for three
months now.

2.7 Implementation Repository

The Implementation Repository contains information
that allows the ORB to locate and activate
implementations of objects. Ordinarily, installation of
implementations and control of policies related to the
activation and execution of object implementations is
done through operations on this service.

We did not actually use this service, but took its
features and interfaces into account when writing our
main management program. It starts objects, loads the
shared libraries and other CORBA services needed for
logging, archiving, etc.

3 PERFORMANCE AND SCALABILITY
BENCHMARKS

Tests were made with 1 GHz Athlon PC with 512 Mb
of RAM. All processes were running on the same
machine, so network latencies were excluded. The
downside of this is that processes switching might have
affected the results. We can safely assume that the real
performance is only better. All test were made with the
Notify Service’s default settings.

We concentrated with testing Notify Service for three
reasons: it is the easiest to test, results represent also
event service performance and it is the only one whose
performance directly influences the performance of the
CS. Already in the beginning we found a minor
advantage of TAO notify service – when it starts, it
writes an IOR of an event channel factory to the name
service. ORBacus’ Notify does not, so user must do it
manually or use resolve_initial_reference instead.

3.1 Time needed for processing an event

First test is very simple. We have one supplier and
one consumer. The supplier sends events and the
consumer receives them, both doing it as quickly as they
can. Trying to overload the service, supplier was
sending events in separate threads. First observation in
the figure 1 is that time, needed for one event, is
increasing with number of threads (except from one
thread to ten threads – this is expected because of better
exploiting of CPU). A big jump from 30 threads to 100

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

503

threads is presumably consequence of overloading the
CPU.

Figure 1 - chart shows average time, needed for
processing an event (processes for sending events

were running on separate threads)

We can also see that TAO is faster than ORBacus. In
this test we have also noticed TAO’s immunity to
increasing number of events. This cannot be said for
ORBacus, which had quite a few problems dealing with
this. It actually lost a bit of them, which can be very
critical in some conditions.

3.2 Increasing number of suppliers

0

1

2

3

10 30 50 suppliers

ti
m

e
p

er

ev
en

t
[m

s] TAO

ORBacus

Figure 2 - average time for processing an event from
many suppliers

From 10 to 50 suppliers were connected to the same
event channel and doing their job. The result is quite
expected. Time needed for one event is slowly
increasing (from 0.5 ms, 10 suppliers, to 0.6 ms, 50
suppliers at TAO and 2.3 to 2.6 ms, ORBacus). We can
again see that TAO is faster.

3.3 Increasing number of consumers

We used one supplier, to which 10 to 50 consumers
were connected. The time per event increases with the
number of consumers, because the service must create
one event for each consumer. Although ORBacus is
slower again it has one advantage. If we divide time
needed for one event with number of consumers, we get
the result, which can be seen in figure 2.

With ORBacus, the needed time is decreasing (just
the opposite from TAO). This means that ORBacus is
better dealing with big number of consumers. This can

be probably explained with better logic for multiplying
events.

0

1

2

3

10 30 50 consumers

tim
e

pe
r

ev
en

t
[m

s]

TAO

ORBacus

Figure 3 - chart shows average time needed for
multiplying an event - one supplier sends event,

many consumers are receiving it

3.4 Other observations

First thing you notice dealing with these two services
is much more professional appearance of ORBacus.
Web pages are clearer, documentation is extensive,
replies to messages, send to mail list, are quicker.
ORBacus service is also more thoroughly implemented
(more possibilities for quality of service settings, etc). It
is also easier to destroy TAO service with a bad client.
These advantages are probably at the same time the
reasons, which make ORBacus service slower.

4 CONCLUSIONS
Most of the services described in this paper are

successfully running at ALMA [2] (for now just for
testing and development purposes), ANKA [1] and other
systems. Many others and ourselves have found them
very useful – so it is a waste of time and money not to
use them. But they are not so perfect to use them
without fundamental consideration of possible
bottlenecks and other points of failure. And we still have
to implement a few extra features of our own, so it is
unlikely to get away without programming.

REFERENCES
[1] M. Plesko et al: A Control System Based on Web,

Java, CORBA and Fieldbus Technologies,
PCaPAC99 workshop, KEK, Tsukuba, January
1999

[2] G. Chiozzi, B. Gustafsson, B. Jeram, M. Plesko, M.
Sekoranja, G. Tkacik, Common Software for the
ALMA project, this conference

[3] Object Management Group: http://www.omg.org
[4] TAO home page:

 http://www.cs.wustl.edu/~schmidt/TAO.html
[5] ORBacus home page: http://www.orbacus.com
[6] Borland – Visibroker’s CORBA:

 http://www.borland.com/visibroker/

0

2

4

6

1 10 30 100 threads

ti
m

e
pe

r
ev

en
t [

m
s]

TAO

ORBacus

8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California

504

