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Abstract

Transverse beam profile monitoring is essential for safe
and efficient accelerator operation. In high-radiation envi-
ronments such as beam dumps, cameras degrade rapidly.
To address this, a single multimode fiber (MMF) transmis-
sion system was previously tested to transport scintillation
light from a screen to a remote camera. Because multi-
ple guided modes are excited and coupled during propa-
gation, the fiber output does not preserve the image and
requires reconstruction. This contribution evaluates seven
machine-learning reconstruction models for recovering the
original transverse beam distribution from MMF output. Us-
ing data from the MMF-relayed Chromox screen campaign
at CERN’s CLEAR facility, the study compares models
in terms of reconstruction error, convergence speed, and
run-to-run stability, with particular attention to the use of
incoherent light. The results indicate robust options for
radiation-tolerant, MMF-based transverse diagnostics.

INTRODUCTION

CERN is investigating radiation-resistant approaches for
beam imaging to reduce damage to cameras and periph-
eral electronics [1]. In previous work, a single large-core
multimode fiber (MMF) relay was developed to transport
light from a Chromox scintillating screen in the beam pipe
to a CMOS camera located in a low-dose area [2]. The
main difficulty is that propagation modes inside the MMF
experience coupling, scattering, and dispersion, which al-
ter the input power distribution [3]. The output intensity
is therefore a scrambled mixture rather than an image di-
rectly usable for transverse beam parameter extraction. Al-
though fiber-based image reconstruction has been studied,
the optimal approach for incoherent, screen-based light re-
mains open. This paper evaluates seven representative re-
construction models—covering image-to-image, generative,
and image-to-parameter formulations—using paired data
from an MMF-relayed screen campaign. To address practi-
cal deployment, we also report model size, training time, and
convergence speed, relevant for periodic fine-tuning under
drifting MMF conditions (temperature, vibration).
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During the campaign, light from a 30 mm x 30 mm Chro-
mox scintillating screen was transmitted through a multi-
mode fiber (FP1500ERT, @1.5 mm). Lenses coupled light
into and out of the fiber, with a beam splitter sending a frac-
tion to a reference camera for direct screen images. Each
dataset entry therefore consists of a paired image (reference
screen, MMF output), stored as 256 x 256 single-channel
arrays. In total, 6257 pairs were acquired using a triplet scan
technique; the main parameters are listed in Table 1.

Table 1: Transverse Beam Image Dataset Collected at CERN

Dataset Configuration Specifications
Facility CLEAR
Particle source e

Energy ~ 150 MeV
Screen type Chromox (Al,05:CrO,)
Central 4 693 nm
Number of samples 6257

MACHINE LEARNING MODELS AND
TRAINING

Four model families are considered for MMF image re-
construction. First, the vectorized models, such as the trans-
mission matrix (TM) [4] and a single-hidden-layer dense
neural network (SHL-DNN) [5], operate on flattened input
and output images. Their model parameter count scales as
O ((HW)?), where H and W denote the image height and
width, so for these models we restrict the resolution: the
SHL-DNN input is reshaped to 64 x 64, and both SHL-DNN
and TM outputs are constrained to 32 x 32.

The convolutional image-to-image models include U-Net
[6], a convolutional autoencoder (CAE), and the conditional
generative adversarial network Pix2Pix [7], all operating
on native 256 x 256 input and output images. These mod-
els share an encoder—decoder structure, where the input is
progressively compressed into abstract feature representa-
tions and then decoded back to an image. U-Net preserves
fine detail through skip connections; CAE removes all skip
connections and pooling layers, instead using stride-2 con-
volutions for improved generalization; Pix2Pix extends the
U-Net by adding an adversarial discriminator to enhance
reconstruction of fine structures.
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For the regression model, the encoder—regressor network
(ERN) [8] retains only the encoder branch and attaches a
multilayer perceptron head to directly predict four transverse
beam parameters from the MMF output. Finally, the Swin
Transformer (Swin-T) model [9, 10] employs windowed self-
attention to capture both local and long-range correlations
introduced by MMF scrambling, offering strong global mod-
eling at higher computational cost. All image-based models,
including the vectorized ones, are trained with a pixel-wise
mean squared error (MSE) loss, whereas the ERN is trained
with a beam parameter-wise MSE loss.

All models were trained under identical conditions on a
GPU-based Linux HPC using PyTorch. Each model was
trained for up to 100 epochs, with early stopping to prevent
overfitting, using the Adam optimizer at a learning rate of
1 x 10~#. Input image pixels were normalized to the range
[0, 1]. To assess stability, each model was run three times
with different random seeds affecting weight initialization
and dataset partition. For a unified evaluation, the final per-
formance metric is the normalized four transverse beam pa-
rameters (horizontal and vertical beam centroids and widths)
extracted from the reconstructed images using Gaussian fit-
ting. The dataset was split into training, validation, and test
sets in an 8:1:1 ratio. Because beam images were acquired
sequentially, temporally adjacent frames could be highly
similar. Conventional random splits would therefore risk
near-duplicate leakage between training and test sets. To
prevent this, we applied a time-based split, ensuring the test
set has no temporal overlap with training data. The resulting
training history for all models is summarized in Fig. 1.
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Figure 1: Training history over 100 epochs: (a) training loss
and (b) validation set MAE on four beam parameters.

The top plot illustrates the convergence of training loss
over epochs, while the bottom plot shows the mean absolute
error (MAE) of four beam-parameter predictions on the val-
idation set, where each sample point represents the average
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of multiple runs. All models converge rapidly within the
first 20 epochs. Among the convolutional models, CAE and
U-Net achieve very low training loss, whereas Pix2Pix ex-
hibits larger fluctuations, likely due to adversarial training
instabilities. The ERN converges more slowly and stabilizes
at a higher loss than the others, consistent with its beam
parameter-wise loss function.

The model size and training time are summarized
in Table 2. TM and SHL-DNN have simple structures but
their parameter count scales quadratically with resolution.
For example, a full 256 x256 image for the TM would require
on the order of 17 GB, and the SHL-DNN is even larger.
The SHL-DNN design follows the original paper, where it
was optimized for coherent light sources, but it appears less
suitable for incoherent MMF image reconstruction. By con-
trast, convolutional models are more compact due to weight
sharing in the kernels, and the ERN is the most lightweight
model because it omits the decoder branch. Training times
are reported as the mean + standard deviation over three
runs with different random seeds, measured until early stop-
ping. The U-Net required the longest training, mainly due to
the heavy computation from concatenated skip connections,
while the other models remained within a manageable range.

Table 2: Model Size and Total Training Time on the HPC

Model Size [MB] Training Time [min]
SHL-DNN 80 17 + 1

ERN 46 54 +25

CAE 71 59+ 18

™ 256 61 +6
Swin-T 150 153 + 31
Pix2pix 104 155 + 89

U -Net 83 311 +13

TRANSVERSE DISTRIBUTION
RECONSTRUCTION

Representative reconstruction samples are shown in Fig. 2.
Each row corresponds to one MMF input—output pair, where
the first two columns show the MMF output (input to the
model) and the corresponding ground-truth beam distribu-
tion. These comparisons illustrate how different models
balance fidelity to fine details versus recovery of the main
structure. For the TM and SHL-DNN approaches, the lim-
ited model size constrains the reconstruction quality. While
they can reproduce the approximate beam position and gen-
eral blob shape, the output resolution is lower and back-
ground noise remains high, reflecting an averaging effect
over many training samples. In contrast, the convolutional
models achieve improved performance. They not only re-
cover the beam position but also reproduce shape informa-
tion with reduced noise. Among them, the CAE provides the
best overall quality: its compressed latent representation and
simplified architecture allow more generalized reconstruc-
tion of both centroid and width. The ERN, which directly
predicts beam parameters, is not included in this figure.
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Figure 2: Representative transverse beam samples with their corresponding MMF output reconstructed by all evaluated
models, with orange curves showing the transverse beam profiles.

Figure 3 summarizes the overall performance of each
model on the test set. For each reconstructed image (or
directly from the ERN), four transverse beam parameters
were extracted, and the MAE across these parameters was
computed. The x-axis lists the models, and the y-axis gives
the per-sample MAE histograms. The box represents the
interquartile range (Q1-Q3), whiskers extend to the furthest
data points within 1.5 x IQR, the orange line indicates the
median, and the green triangle shows the mean. A small
number of outliers beyond 0.1 are omitted for clarity. Con-
sistent with the qualitative reconstructions, TM and SHL-
DNN yield higher errors and broader distributions, indi-
cating larger variability across samples. The convolutional
models show lower MAE and tighter ranges, reflecting both
improved accuracy and more stable performance.
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Figure 3: Box plots of MAE distributions and statistical
comparison across models.

The final performance scores of all models, measured
in MAE, MSE and root mean squared error (RMSE), and
evaluated over three runs on the test set, are summarized
in Fig. 4. Two horizontal dashed lines indicate the lowest
MAE and RMSE values. CAE achieves these minima, U-
Net performs comparably well, SHL-DNN yields the highest
errors, and the other models (ERN, TM, Swin-T, Pix2Pix) lie
in between, confirming CAE as the most reliable approach.

CONCLUSION
This work presented a systematic study of machine-
learning-based reconstruction for radiation-tolerant trans-
verse beam imaging using the scintillating screen and a
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Figure 4: Average test-set performance over models in terms
of MSE, RMSE, and MAE on beam parameters prediction.

multimode fiber. Unlike most earlier studies on coherent
laser sources, this work evaluated model performance with
incoherent scintillation light. Seven models were bench-
marked by reconstruction accuracy, size, and training time.
Lightweight designs such as ERN and CAE are advantageous
for practical fine tuning under changing MMF conditions,
while convolutional encoder—decoder structures repeatedly
outperformed the TM and SHL-DNN baselines. Among
them, the CAE offered the best overall balance between ac-
curacy, stability, and computational cost, making it a robust
candidate for MMF-based diagnostics.

Future work will address the dataset side of the prob-
lem, in particular how to achieve good performance with
minimal experimental data. Approaches such as synthetic
augmentation, transfer learning, or active sampling may help
reduce data requirements while improving generalization
under varying MMF conditions. These directions represent
a step toward deploying radiation-tolerant imaging systems
in high-radiation accelerator environments.
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