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Abstract
Precise characterisation of photocathode mean trans-

verse energy is critical for optimising electron beam quality.
This paper presents a physics-informed image processing
pipeline using Transverse Energy Spread Spectrometer data
(231–291nm), incorporating Gaussian Point Spread Func-
tion fitting, Wiener deconvolution, resolution equalisation
via reblurring, and physics informed noise-aware augmenta-
tion. A high-fidelity dataset of 6500 synthetic images was
generated, achieving average SSIM = 0.997 and 𝑅2 ≈ 0.98,
enabling robust MTE prediction and supporting future ML-
based diagnostics for next-generation photoinjectors.

INTRODUCTION
In electron accelerators, beam emittance governs bright-

ness. This is fundamentally limited by the electron transverse
momenta at the photocathode, 𝑝𝑥 and 𝑝𝑦 as follows:

𝜀𝑛𝑥,rms =
𝜎𝑥√⟨𝑝2

𝑥⟩
𝑚𝑐 and 𝜀𝑛𝑦,rms =

𝜎𝑦√⟨𝑝2
𝑦⟩

𝑚𝑐 . (1)

Reducing ⟨𝑝2
𝑥,𝑦⟩ is essential to achieve sub-0.5 𝜇m/mm

emittance from photocathodes [1]. Both the mean transverse
energy (MTE) and mean longitudinal energy (MLE) origi-
nate from the intrinsic emittance of the photocathode, which
is mainly governed by the material’s surface morphology
and the excess energy imparted to each electron at the in-
stant of photoemission. This is the difference between the
incident photon energy and the material work function [2,3].

The ability to measure the transverse component of the
excess energy of emitted electrons facilitates research to
characterise existing and new photocathode materials, and
to reduce intrinsic emittance.

The Transverse Energy Spread Spectrometer (TESS) de-
veloped by the ASTeC at STFC Daresbury Laboratory is
specifically designed to measure the MTE by acquiring the
transverse energy distribution curve (TEDC) from photo-
cathode materials. TESS illuminates the photocathode with
a low-intensity beam (<10 pW) to ensure single-electron
emission at femtoampere currents, tracking each electron’s
radial displacement on a phosphor screen. Electrons travel
35 mm in 8–25 ns, depending on the source–detector poten-
tial, producing footprints up to 8 mm radius. The transverse
energy 𝜀𝑡𝑟 is then extracted from the radial position using:

𝜀tr = 𝑚𝑒
2 ( 𝑟

𝜏)
2

, (2)
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where 𝑚𝑒 is the electron mass, 𝑟 is the measured footprint
radius, and 𝜏 is the electron time of flight.

𝑁𝑒(𝜀tr) = 𝑑𝑁
𝑑𝜀tr

= 2𝜋𝜏2

𝑚𝑒
𝐼𝑐(𝑟). (3)

In Eq. (3) 𝐼𝑐(𝑟) is footprint function and 𝑁𝑒(𝜀tr) is TEDC
as function of emittance. This work follows the methodology
described in Ref. [2], where careful calibration and negli-
gible space-charge effects allow TESS to achieve 1–2 meV
resolution, enabling precise photocathode R&D and beam-
brightness optimisation.

METHODOLOGY
Accurate MTE measurement is vital for optimising pho-

tocathodes. Our pipeline (Fig. 1) from data processing to
physics-informed augmentation enables real-time MTE pre-
diction and ML-based beam diagnostics.

Figure 1: Flowchart summarising the complete TESS data
processing and augmentation pipeline.

Single photoelectrons fall onto a microchannel plate
(MCP) that generates a ‘beamlet’ which falls onto a phosphor
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Figure 2: TESS concept showing a typical photoemission footprint acquired from ≈ 107 electrons over 120 s integration [2].

screen. Data is then acquired using a CCD camera which
images the integrated florescence generated by the phosphor
screen over a period of approximately 100 s, thus yielding
a photoemission footprint, see Fig. 2. Data were acquired
for all photocathode illumination wavelengths from 231 to
291 nm in 5 nm steps. Each image undergoes preprocessing
including dark-current subtraction, flat-field correction, and
pixel intensity normalisation. Numpy was use to downscale
the image to binary by still preserving the quality [4].

In the second step, quantitative characterisation is per-
formed by fitting each image to a two-dimensional elliptical
Gaussian function which defines photoemission footprint:

𝑓 (𝑥, 𝑦) = 𝐴𝑒[−𝑎(𝑥−𝑥0)2−2𝑏(𝑥−𝑥0)(𝑦−𝑦0)−𝑐(𝑦−𝑦0)2] + Ω∗. (4)

Here, 𝑓 (𝑥, 𝑦) is the pixel intensity at position (𝑥, 𝑦), 𝐴 the
peak amplitude, and (𝑥0, 𝑦0) the centroid of the Gaussian.
The cross-term coefficient 𝑏 captures the 𝑥-𝑦 correlation.
The expansion for each of the coeffecients can be seen in the
Appendix section. The additive term Ω∗ models uniform
background. This gives a full parametric description of a
rotated elliptical PSF, capturing both intensity and shape. [5–
7] (see Fig. 3).

Figure 3: Measured 𝜎𝑥 and 𝜎𝑦 of the TESS PSF versus
illumination wavelength, revealing wavelength-dependent
changes in spatial resolution and emission anisotropy.

Next, the underlying (latent) electron emission distribu-
tion was recovered using Wiener deconvolution. In imaging

terms, each observed image 𝐼(𝑥, 𝑦) is a convolution of the
latent emission pattern 𝑓 (𝑥, 𝑦) with the PSF:

𝐼(𝑥, 𝑦) = ∬ 𝑓 (𝑥′, 𝑦′) ⋅ PSF(𝑥 − 𝑥′, 𝑦 − 𝑦′) 𝑑𝑥′ 𝑑𝑦′. (5)

This convolution models spatial blurring from the imaging
system. In the Fourier domain, Wiener deconvolution is
given by Ref. [7]:

𝐹(𝑘𝑥, 𝑘𝑦) =
𝐻∗(𝑘𝑥, 𝑘𝑦)

|𝐻(𝑘𝑥, 𝑘𝑦)|2 + 𝛼
𝐼(𝑘𝑥, 𝑘𝑦), (6)

where 𝐹 is the Fourier transform of the latent image, 𝐻 that
of the PSF, 𝐻∗ its complex conjugate, and 𝛼 a regularisa-
tion constant (typically 10−4). This value was explicitly
chosen through empirical tuning and SNR optimisation to
balance noise suppression and feature preservation. The in-
verse transform recovers 𝑓 (𝑥, 𝑦) (See Fig. 4) [7]. For radially
symmetric PSFs and profiles, the operation simplifies to a
one-dimensional form via the zero-order Hankel transform
the radial analogue of the 2D Fourier transform [8].

Figure 4: Wiener deconvolution restored the 236 nm TESS
image, revealing a sharper latent emission profile with im-
proved spatial resolution.

To ensure cross-wavelength consistency, all latent images
were re-blurred to match the sharpest PSF (at 291 nm) [9]:

𝐼(0)
𝑖 (𝑥, 𝑦) = 𝑓𝑖(𝑥, 𝑦) ∗ 𝐺(𝑥, 𝑦; 𝜎0𝑥, 𝜎0𝑦), (7)
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𝐺(𝑥, 𝑦) = 1
2𝜋𝜎0𝑥𝜎0𝑦

𝑒
−⎛⎜

⎝
𝑥2

2𝜎2
0𝑥

+ 𝑦2

2𝜎2
0𝑦

⎞⎟
⎠, (8)

where 𝐺 is a 2D Gaussian kernel with widths 𝜎0𝑥, 𝜎0𝑦. This
convolution enforces uniform resolution across all wave-
lengths (see Fig. 5).

Figure 5: 236 nm latent emission re-blurred to match 291 nm
resolution for consistent cross-wavelength comparison.

Finally, physics-informed augmentation was used to ex-
pand 13 re-blurred images into 6500 synthetic variants via ro-
tations (±0.1−1∘), sub-pixel shifts (±1–2 µm), contrast jitter
(±5 %), and noise models (Poisson, Gaussian, CCD). Phys-
ically, these mimic beam pointing jitter, alignment errors,
and detector noise, enabling robust beam-dynamics–aware
ML models for emission characterisation. The need for a
large number of variants is as it improves generalisation by
covering wider input space and also it acts as a regulari-
sation. Only images with an average structural similarity
index measure (SSIM) ≥0.95 were retained [2, 10, 11] with
representative results shown in Fig. 6.

Figure 6: Representation of randomly picked augmented
emission footprints following re-blurring and augmentation
at different illumination wavelengths (12 of 13 shown).

RESULTS AND DISCUSSION
We developed a physics-informed image processing and

augmentation pipeline for analysing photoemission pro-
files from the TESS system. Starting from 13 raw CCD
images across ultraviolet wavelengths, we extracted two-
dimensional Gaussian PSF parameters, applied Fourier-
domain Wiener deconvolution to recover latent emission
profiles, and standardised resolution by re-blurring to a com-
mon PSF at 𝜆0 = 291 nm. The PSF widths, 𝜎𝑥 and 𝜎𝑦, de-
creased with increasing wavelength, consistent with reduced
MTE near the photoemission threshold. Using noise-aware
augmentation, the pipeline expanded the dataset to 6500
physically consistent synthetic images, each labelled with
wavelength, MCP gain, and estimated MTE derived from
fitted Gaussian widths. The dataset demonstrated high fi-
delity (average SSIM = 0.99729, with all >0.95) and strong
correlation with ground truth (𝑅2 ≈ 0.98). These results
confirm that the method enables rapid, accurate photocath-
ode characterisation and supports ML-based prediction and
optimisation of emission properties for next-generation pho-
toinjectors.

FUTURE DEVELOPMENT
Future work will integrate physics-informed deep learning

models, including convolutional neural networks (CNNs),
generative adversarial networks (GANs) and physics-
informed neural networks (PINNs) to predict MTE and emis-
sion profiles directly from single-shot TESS images [12,13].
The dataset may be extended to temporal sequences, en-
abling ultrafast photoemission tracking in video-TESS mode.
Real-time MCP diagnostics and predictive control will aid
beamline optimisation. Transfer learning across defferent
materials could accelerate screening and discovery of pho-
tocathodes for next-generation electron sources and free-
electron laser (FEL) injectors [14].
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APPENDIX

𝑎 = cos2 𝜃
2𝜎2

𝑥
+ sin2 𝜃

2𝜎2
𝑦

, (9)

𝑏 = sin(2𝜃)
4 ( 1

𝜎2
𝑦

− 1
𝜎2

𝑥
) , (10)

𝑐 = sin2 𝜃
2𝜎2

𝑥
+ cos2 𝜃

2𝜎2
𝑦

, (11)

where 𝜃 is the rotation angle of the Gaussian ellipse.
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