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Introduction
● The Advanced Photon Source (APS): 7 GeV, 3rd 

generation storage-ring light source
● Planning to build a 4th generation SR (4GSR) light 

source
● Beam abort modeling with elegant[1] and MARS[2] 

indicated even low-Z, low-density material such as 
aluminum could be damaged as peak dose rates were 
expected to exceed 15 MGy.

● Had never observed beam damage in Al prior to 
running our experiments.

● This concern led to the studies we are discussing here  
to determine the validity of simulations.

● Good experiments require good diagnostics!
_________________________ 
1. M. Borland. ANL/APS LS-287, (2000); Y. Wang et al. Proc. of PAC 2007, 
3444–3446 (2007). 

2. N.V. Mokhov, et al., “MARS15 code developments driven by the intensity 
frontier needs”, Prog. Nucl. Sci. Technol., 4, pp. 496-501 (2014) 
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Diagnostics—
● Set-up and operations

– BPMs for lattice and vertical positioning set-up
– Linear Variable Differential Transformer (LVDT) for horizontal positioning of the scraper assembly
– Diagnostic Camera and frame grabbers for pre-irradiation imaging

● Experiment
– Turn-by-Turn (TBT) BPMs for beam position and orbit decay
– Fast Beam Loss Monitors (BLMs) for loss intensity and timing
– Pinhole Camera for spot size and beam emittance
– Diagnostic Camera for collimator imaging after and during the beam strike
– DCCT current reference
– Pressure and temperature sensors—very important, especially during scraper conditioning

● Post experiment
– Photography
– Microscopy—a little tricky if pieces are activated
– Metallurgy—almost impossible if pieces are activated!
– Gamma spectroscopy—for activated pieces!!
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Experiments—two thus far: May 2019 and January 2020

● Both studies were conducted at the 
beginning of a run cycle to have time to 
remove the collimator experiment prior to 
user operations.  This posed challenges.

● In May 2019 [3], we were limited to <70 mA 
due to an obstruction in the SR beam 
chamber—unrelated to the collimator 
experiment—limiting our time.

● In January 2020, extra time was needed to 
condition the collimator and scraper 
assembly to 200 mA.

● Two collimator test pieces are mounted on a 
horizontal scraper assembly with ~1-mm 
gap between

         Diagnostic camera image

●

Ti

Al

gap

11 mm
   FOV

May 2019—prior to irradiation

__________________________
3. J. Dooling et al. NAPAC’19 MOPLM14 
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Experimental Setup—triple Reduced Horizontal Beamsize (RHB) 
Lattice [4-6]

Reference beam sizes taken with the S35 x-ray 
pinhole camera

scraper
location

Wish to make both σx and σy small to mimic 
APS-U conditions.

with
β x = 4  m
β y = 6  m
ηx = 0.059  m
ηy = η ' x = η' y = 0
Δ p
p

= 10−3
4. Yipeng Sun, AOP-TN-2018-090
5. V. Sajaev, AOP-TN-2019-022
6. Michael Borland, Yipeng Sun, Vadim Sajaev, AOP-TN-2019-024 
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Experimental setup
● May 2019, collimator material 

tested: aluminum and titanium 
alloys

● January 2020: just aluminum—
with reduced surface roughness

● Used a DVR to record images 
at 30 fps to observe collimators 
during the beam strike

collimator 
test
piece

diagnostic camera

collimator surface radius 0.8 m
surface roughness (5/19): 2.7 μm

Two pieces
are mounted
side-by-side 
at the end
of the 
scraper
assembly

e-beam

Built
and torn
down both times
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Experiment May 2019

64.1 mA on aluminum alloy T6061

66.9 mA on titanium alloy Ti6Al4V

Emission is observed only in a single frame
Post irradiation image

same camera settings in both cases

beam dir.

beam dir.

For the first time at APS, observe beam damage in Al
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Experiment May 2019—Microscopy

33.1 mA

64.1 mA

Surface
features
more highly
modified 
in titanium
Alloy

Melting temp:

AlT6061: 858 K
Al2O3: 2345 K

Ti6Al4V:1878 K
TiO2: 2116 K

crude 
thermometry

aluminum titanium alloy

15.9 mA

32.1 mA

66.9 mA

“double
ridge”
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May 2019—Metallurgy in aluminum only
—because of activation, cutting and polishing of the Ti-alloy piece was much 
    more difficult 

33.1 mA 67.4 mA
These are now seen as transitional conditions

Beam direction is out of the page

using 
Barker’s 
etch
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January 2020 Collimator Experiment 

66 mA, false color 201 mA, BW

Diagnostic camera images—beam moves from right to left

● Goal was to reach 200 mA—attained
● Vertical beam size was better controlled in this experiment
● Only Al collimator test pieces used: average surface roughness: 0.45 μm

gap

Ejecta 
strike 
across 
the gap
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Multiple strike locations—emissions diminish with subsequent hits 

64 mA

1st

2nd

200 mA

1st

2nd

Beam direction right to left

● Depth of field 
2 mm

● Structures that
remain in focus
must be confined
to this region

● Images are not 
high resolution 
(360x240) but 
still useful 



J. Dooling et al.         International Beam Instrumentation Conference 2020            September 14-18, 2020               13

Five strike case at 200 mA—Emission
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Five strike case at 200 mA—post-irradiation

200 mA 5x
200 mA 1x
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January 2020 Experiment Results 

● Collimators removed from the SR still on scraper body
● Using SLR camera; higher res., narrower depth of field
● 16 mA (18.1 mA)—no effect, damage starts at 32 mA 

(34.6 mA)   
● To reduce wakefield heating, 200-mA cases were 

run with 972 bunches rather than 324.

Reached dose levels expected in APS-U
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January 2020 Experiment Results—more photography 
● Collimator pieces removed from scraper; surface ~ normal to FOV
● Single shot cases, from the bottom 34.6, 69.4, 99.1, 202.0, 100.0, 201.2, 202.1 mA

Illumination bottom Illumination right

Damage crosses thresholds: from none to plastic to hydrodynamic

0.4 mm

SN

10

09

06

08

03

02

01
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Experiment January 2020—Beam loss dynamics, typically 
loss is spread over several turns

elegant

Fast BLMs also show increasing current moves loss earlier. Shorter, more intense peaks.
Simulation with elegant [7] also shows this effect—due to beam loading

differentiating particles remaining

ID1, Ch3

Fast FO BLM in ID1 cryostat

7. M. Borland, AOP-TN-2020-029
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Experiment January 2020—Beam loss dynamics

● Global
● Time to lose percentage of 

whole beam

● 248 m downstream of S37
● 2 fast BLMs in cryostat
● 2 fast BLMs external
● Signals overall weaker here 

than in BLMs upstream 

● 110 m downstream of S37
● 2 fast BLMs in cryostat
● 1 fast BLMs external

—Spiral or arrival time of beam loss.  Fast BLMs using center of the loss signal

Overall an excellent agreement between measured arrival time and elegant 50% loss time

ID1 ID6 elegant
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Turn-By-Turn (TBT) BPMs during selected beam dumps

BPM TBT Sum signals (log scale)  derivative wrt turn
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Comparison of TBT BPMs with fast BLMs

● Generally good agreement 
between fast BLMs and 
TBT BPMs in terms of 
arrival time (time since rf 
muted)

● Arrival Time defined by the 
peak of the distributions 
(no fitting)

●  Systematic delay of TBT 
relative to the BLMs—log 
scaling of TBT may be part 
of the explanation
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Experiment January 2020—Post irradiation analysis

● Significant surface damage is observed above 65 mA, fluid dynamic 
(hydrodynamic) behavior clearly evident at 200 mA

● Surface roughness appears to play a role possibly due to wakefields
– Can this effect be used to disrupt the beam?

● Threshold for damage appears between 16 and 32 mA, similar to May 2019
● Both aluminum samples are now activated!  Be-7 detected (53 day 1/2-life)
● This makes analysis difficult

– Microscopy can be done after movement of samples or movement of microscope 
– Metallurgy may be possible at external locations (generation of “mixed waste” is the 

problem)—COVID has slowed this process
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Whole beam dump / h-collimator modeling challenges
 

● Energy densities reach into the hydrodynamic regime (>15 kJ/g or 15 MGy)
● Hydrodynamic tunneling will take place[8], especially for higher-Z, higher-density 

materials
● Static simulations (e.g. MARS, FLUKA, MCNP) not reliable especially for high-Z, 

high-density—now must include aluminum in this group! 
● Alternate codes required for coupling physics;  Doug Wilson, LANL recommended 

FLASH[9].  Wilson did early coupling work with Nikolai Mokhov for the SSC[10].

___________________________
  8. N. Tahir et al., “Review of hydrodynamic tunneling issues in high power particle accelerators,” NIM-B, 427 (2018) 70-86.

  9. http://flash.uchicago.edu/site/flashcode/user_support/

10. D. C. Wilson, R. P. Godwin, J. C. Goldstein, N. V. Mokhov, and C. A. Wingate, “Hydrodynamic Calculations of 20-TeV Beam Interactions     
      with the SSC Beam Dump”, Proc. PAC'93, Washington D.C., USA, Mar. 1993, pp. 3090-3093.  

http://flash.uchicago.edu/site/flashcode/user_support/
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Have started hydrodynamics modeling
2-D FLASH model[11]—dose map from MARS

● Proposal to combine MARS, FLASH 
and elegant

● Preliminary results look promising
● Other labs are interested (SSRL, 

EIC/BNL, ESRF-EBS)
● Setting conditions for transitions 

from rigid to flowing matter is guided 
by our experimental data

Max dose
=1.6 MGy
single bunch
of 48

FLASH Flow conditions:

Melt:

Vapor.:

11. A. Grannan, J. Dooling, AOP-TN-2020-038

After bunch 
28 of 48 in
1st  turn of 
5-turn loss
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Developing coupled (multiphysics) modeling to guide MPS work 

● elegant simulations indicate the 
temporal loss will be spread 
over many turns

● Complex temporal behavior:
- FWHM bunch duration: 250 ps
- time between bunches: 77 ns
- one turn: 3.68 μs

● Model cannot account for all 
loss scenarios; therefore, need
to be conservative

● Diagnostic data derived from 
experiments guide code 
development APS-U simulation

    —M . Borland
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Summary
● Two Whole-Beam Dump Collimator Experiments were conducted in the APS-SR
● In the first experiment, transitions from solid to plastic/partial-melt state in Al and Ti-

alloy target collimators were observed
● In the second experiment, attained 200 mA on aluminum targets; transitions to a fully 

hydrodynamic behavior were observed
● elegant predictions of beam dynamics during aborts show good agreement with 

measurements
● Diagnostic camera installed to observe regions damaged AFTER beam strikes yielded 

fascinating and important data DURING beam strikes
● Fast loss monitors corroborate BPM data and provide high temporal resolution
● Good diagnostics are key for a successful experiment!
● We are presently involved in a effort to couple static and hydrodynamic modeling 

codes for MPS development—now have benchmark data from our array of 
diagnostics!
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