

High Performance Data Acquisition for a Modern Accelerator

GUOBAO SHEN

Controls Group / Accelerator Systems Division Advanced Photon Source Argonne National Laboratory

IBIC, 14-18 September 2020

APS-U Project Scope

Feature beamlines

 Suite of beamlines, including long beamlines, designed for best-in-class performance

42 pm-rad

Beamline enhancements

- Improvements to make beamlines
 "Upgrade Ready"
 - Existing beamlines are planned to come back on-line after the upgrade

New storage ring

- 6 GeV with 200 mA,
 42 pm-rad emittance
- Hybrid 7BA lattice with reverse bends
- Improved electron and photon stability

New insertion devices

Including superconductingundulators

New/upgraded front ends

Injector improvements

 Increase performance beyond present capability

On-axis "swap-out" injection

APS-U – High Brightness Storage Ring

APS double bend lattice

APS-U 7-bend achromat lattice

Hybrid 7BA lattice with longitudinal gradient, transverse gradient and reverse bend dipoles

$$\varepsilon \propto \frac{E^2}{(N_D N_S)^3}$$
 $N_D = \# \text{ dipoles/sector}$ $N_S = \# \text{ sectors}$

MBA Accelerator Controls Scope

Gray items are supported/enhanced by "Operations"

APS-U Controls High Level Applications

Motion Systems

- EPICS 7 Waveform/Image Viewer
- EPICS 7 sdds-epics toolkit enhancements
- Process Variable Directory & Name Service
- Infrastructure Monitoring

Vacuum Components

X-RAY

BPMs

 High Level Applications for Specific Systems (e.g. orbit, synchronous PS setpoint, post-mortem, ...)

BPMs

Double-sector Infrastructure

Interconnection Sketch

Power Supply Cabinets

< Project-wide Tools >

- Component Database
- eTraveler
- Cable Management Application

Physics Applications/Beam Study/Operator Tools Save/Compare/Restore, **EPICS Extensions/MCR Tools** sdds programs & utilities, Data Logger, Glitch logger, PEM, 1000s of scripts, MCR logbook MPS Dump Review, .. Waveform/Image Viewe MEDM, alh, burt, StripTool, adt, ... SDDS-EPICS 7 Toolkit Network HTTP **EPICS IOC** EPICS 7 HTTI EPICS 7 HTTI Soft Records **IRMIS** Directory (run control, etc) PV Gateways **EPICS 7** Database

APS-U Control System Infrastructure (+ MPS)

X-RAY

BPMs

Power Supply Cabinets

- Timing / Fast Event System
- Double-sector Infrastructure
- Technical System Connections
- · VME chassis (for legacy modules)
- · Serial-to-Ethernet ports
- Tier 3 Network Switches

FOFB

- Servers
- DAQ (time-correlated data acquisition system)

- Network Design (VLANs, PV Gateways) for high data rates
- Machine Protection System (MPS)

APS-U Technical System Interfaces

- Unipolar Power Supplies + DAQ
- Bipolar Power Supplies + DAQ
- Vacuum Systems + Beam Dumps
- Bunch Lengthening System Interlocks/LLRF + DAQ
- BLS Cryo-system + Distribution
- Injection/Extraction + DAQ
- RF BPM (Libera) + DAQ
- X-Ray BPM
- X-Ray Intensity Monitor
- BPLD

- · Beam Size Monitor (absolute)
- Beam Size Monitor (relative)
- Mechanical Motion System
- DCCT
- Bunch Current Monitor
- Fast Orbit Feedback + DAQ
- Longitudinal Feedback + DAQ
- Transverse Feedback + DAQ
- Booster/SR 352MHz Timing
- · Slow Abort Sequencer

APS-U Data Acquisition (DAQ) System

- The need and specifications for a DAQ system are driven by the technical system implementations that use state-of-the-art technology of FPGAs, SoC, DSPs, and high bandwidth communication links. Such technology can capture GBs of data from the technical systems that must be "consumed" by the control system.
- DAQ Software: represents framework and tools that enable fast data collection for controls, statistics and diagnostics of the embedded controllers utilized by the APSU MBA
- Must consider both the large data volume and fast data rates to scale systems appropriately. Prudence and "best practices" suggest isolating this data from the main controls network.
- Provide a "standard solution" for technical system DAQ implementations for code reuse and consistent interface for clients.

APS-U Data Acquisition (DAQ) System

Key Aspects of the DAQ System:

- Capability to acquire time-correlated synchronously sampled data *from multiple subsystems at different sample rates* and correlate this data to within one beam revolution (3.6 µs) or better
- Support for continuous or triggered data acquisition limited only by the available storage.
- DAQ data includes a timestamp for each sample acquired allowing immediate plotting of data from various systems onto a common time-axis
- The ability to route the data to any number of applications
- Use of EPICS PVA objects to encapsulate numerous fast data signals, parameters, and slow data in an atomic data packet (ensures data synchronicity to the same event)
- Scalability by partitioning the heavy traffic to multiple dedicated subnets and servers
- Separation from operational systems (networks, processors, servers) to allow trouble-shooting/enhancements/reconfigurations during user operation

APS-U DAQ System: R&D Activities

Data Acquisition System

- Time-correlated acquisition across different subsystems (with different F_s)
- Services: Real-time viewing, save to file, in-line processing, ...
- Five DAQ IOCs deployed during R&D
- Additional DAQ IOC deployed in PAR for Injector studies

Diagnostics with DAQ (L. Emery)

- Suppression of 147Hz vibration source in the ring using the DAQ system + post-processing with FFT
- Vacuum chamber was vibrating and introduced a Bx field
- Identification of the nearest quadrupoles required 400 channels, 20 seconds of continuous DAQ data to get 0.5Hz precision

After Shimming

- This allowed separating line frequencies of 20 pumps
- Shims were inserted between poles and vacuum chamber (S37AQ3, S37AQ2)

Hardware Architecture

Technical System DAQ	# of Channels
Fast Orbit Feedback	256 x 20
Power Supply Fast Monitoring	354 x 20
BPM Turn-by-turn	84 (typical) x 20
Single Bunch BPMs	TBD
IX/EX Waveforms	8 x 2
Bunch Lengthening System	9 (typical)
Longitudinal Feedback	1
Transverse Feedback	2
SR X-Ray BPMs	TBD
SR RF (current)	6
SR RF (near term)	10 (typ) x 4
SR RF (future)	5 (typ) x 12
Booster RF (5)	14, 10, 10, 8, 8 (typ)
PAR RF (3)	9, 12, 10 (typ)
Total # of Channels	> 13,000

Significant Architecture Change During Final Design

Previous Plan

- TBT DAQ IOC hosted on a µTCA FPGA card
- PS DAQ IOC hosted on a µTCA CPU
- FOFB DAQ IOC hosted on a linux server

Revised Plan

- TBT DAQ IOC hosted on a linux "DAQ double-sector server" (requires an FPGAbased BPM Aggregator)
- PS DAQ IOC hosted on a linux "DAQ double-sector server" (requires an FPGAbased PS Aggregator)
- FOFB DAQ IOC hosted on a linux server
 "DAQ double-sector server"

Advantages

- Common platform for three major DAQ IOCs
- Local network, local processing, local storage
- Cost effectiveness of commodity servers

 APSU STORAGE RING DAQ SYSTEM

Software Architecture

- Start of DAQ Objects is synchronized across IOCs (using fast event system)
- Can attach 'slow data' to the DAQ Object
- Continuous stream
- Acquisition with history: pre-event/post-event times can be specified
- **Event Detect/Align: Aligns** data wrt a specified event and presents as a single update (appends DAQ objects)

Acquisition Modes

DAQ Data Object

Static Parameters:

Start time, Chan names,

Multiple channels. timestamps, turns-counter at

Detected events, associated data acquired 'on change'

DAQ Data Object

StartTime: TS ParameterList

T-Ctr Timestamp Data1 Data2

- 18:09.0000 1.04
- 18:09.0001 -0.61 -0.23
- 18:09.0002 -0.39
- 18:09.0003 1.03 -0.03

Event-MPS @ 18.09.0300

Performance Considerations

Technical System DAQ	# of Channels	Sample Rate	Anticipated Data Rate (Per IOC)
Fast Orbit Feedback	256 (x 20)	22.6 kSPS	24MB/s
Power Supply Fast Monitoring	354 (x 20)	22.6 kSPS	32.3MB/s
BPM Turn-by-turn	84 (x 20)	271 kSPS	94MB/s
IX/EX Waveforms	8 (x 2)	4GSPS for 50ns	2.7MB/s (aperiodic)
Bunch Lengthening System	9	2.44MSPS	112.2MB/s
Longitudinal Feedback	1	352 MSPS	48MB/s per acquisition (2 acquisitions/s max)
Transverse Feedback	2	352 MSPS	48MB/s per acquisition x 2 (2 acquisitions/s max)
SR X-Ray BPMs	TBD	TBD	
SR RF	6	271 kSPS	9.2MB/s

Summary

DAQ: Time-correlated Data Acquisition System

- Acquires data from multiple systems at different sample rates
- Supports continuous data acquisition
- Multiple signals (waveforms) can be acquired within a single DAQ IOC
- Deployed services and IOCs for several technical subsystems during R&D phase
- System has been used extensively for machine studies, diagnostics and troubleshooting

Plans

- Adding missing features
 - Support for event-driven acquisition
- New IOC Development
 - Injection Kicker IOC
 - Bunch Lengthening System IOCs
 - Longitudinal and Transverse Feedback IOCs

- Existing IOC Enhancements: FOFB, TBT, PS
 - New data protocol between hardware and IOCs
- Develop new tools, processing services and applications
 - Data Correlation and Alignment Service
 - Orbit Service
- Production deployment (CONDA, SUMO)

